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In [1] it is shown that if a = then 

(1) [[na]a] = [na] + n - 1 

for all positive integers n. Out first purpose in this paper is to give an 
alternate proof of (1) and also show that (1) holds even if n is negative. 
Next, we prove that the converse of (1) holds even if (1) is true for all 
negative integers. In conclusion, we derive an additional identity using 
the greatest integer function together with the golden ratio, and we dis-
cuss two sets of sequences related to these results. 

First we show 

Thdotim 7: If 6 = — ^ then [ [n6] ] = [n&] + n - 1 for all integers n+ 0. 

Before proving Theorem 1, let us recall a theorem of Skolem and Bang 
which can be found in [2]. 

ThoxiKdm 2> Let e and t be positive real numbers. Denote the set of all 
positive integers by Z and the null set by 0. Let Ny = {[riY]}n = 1 . Then 
Ne H Nt = 0 and Ne U Nt = Z if and only if £ and t are irrational and e"1 + 
t ' 1 = 1. 

VK.00 j 0 j IkdOKQm 1 '• Let us assume that n is positive. Since n& is not an 
integer for any n j= 0, we have [n&] < n6 < [nS] + 1 provided n 4- 0, so that 

(2) [n$]6 < n&2 < ([nS] + 1)6. 

In Theorem 2, let e = 6 and t = 62, then e"1 + t'1 = 1, so that Ns D N6i = 0 
and N6 U N&2 = Z. Because [|>6]6] and [([n6]+ 1)6] are elements of Ns , while 
[nS2] belongs to N~29 we know from (2) that 

(3) l[nS]S] < [n62] < [([n6] + 1)6]. 

Using the well-known fact that [a + b] = [a] + [b] + y where y = 0 or 1, we 
see that [[n&]S + 6]= [[n6]6] + [6] + y = [[n6]6] + 1 + y where y = 0 or 1. 
Since [n62] - [[ftS]6] is an integer, we conclude from (3) that 

(4) [nS2] - [[nS]S] = 1 

and y = 1. Recalling that 62 = 6 + 1, we obtain 

(5) [[n6]5] = [nS] + n - 1 

and the theorem is proved If n > 0. 
Let us now assume that n < 0 and recall that since nS is not an integer 

then [nS] = ~[-nS] - 1. Using this fact together with the results above for 
n > 0, we have 

{[n6]S] = -[-[nS]S] - 1 

= -[([-n6] + 1)6] - 1 

28 
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= -([[-nS]6] + [6]) - 2 

= ~([-n&] - n) - 2 

= -(-[n6] - n) - 1 

= [nS] + n - 1 
and the theorem is proved. 

We now show 

TkdO/im 3: If [[n6]6] = [nS] + n - 1 for all integers n + 0, then 6 = * "t . 

?Jiooj'' Since [ [n6]6] = [n6] + n - 1, we have [nS] + n - 1 £ [n6]5 < [n6] + n. 

Therefore, 1 < - < 1 when n < 0, while 1 < - — < 1 
if n > 0. n - n n- n 

Hence, 

(6) Lim [ n 6 ] l n-+o n 6 - 13 

provided 6 ^ 1 , which is obviously true. 
By definition of the greatest integer., we know that [nS]_<H(5< [nS ] + 1 

for any integer n and any 6 so that 

g _ _ < _t J. <• g if n > 0, while 6 < < 6 - — when n < 0. 
n n — ~~ n n 

In both cases, 

(7) L l m M l = 6. 
n + 0 n 

?2 /5 
Equating (6) and (7) , we see that 6 - 6 - 1 = 0 . If 6 = « and 

n = 1 then [[n6]6] = [-6] = 0, while [nS] + n - 1 = -1. Hence (1) is false. 

Therefore, 6 = « and we are done. 

Another identity which arose while investigating (1) is 

Th&o/im 4: If 6 = l * , then [ [n6]6 + n6 ] = 2 [rc6] + n for all integers n 

and conversely. 

The proof of Theorem 4 is omitted, since it is essentially the same as 
the proof of Theorems 1 and 3, with the only difficulty arising when trying 
to prove the result for n < 0. This difficulty is overcome by using the 
fact that 

1 + /5 
[[nS]S + nS + 6] = [[n6]& + n6] + 1 when n > 0 and 6 = . 

The argument for the validity of the last statement can be found in [3]. 
Let us now illustrate some interesting applications of Theorems 1, 3, 

and 4. To do so we introduce two special sets of sequences. For any inte-
ger n + 0, define {Sm(n)}™ = 1 by 

(8) Sm(n) = Sm_1(n) + Sm_2(n), m > 3, S1 (n) = n, S2(n) = [no], a = l + ^ 

and for any integer n, define {^(n)}~= by 
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(9) S*(n) = S* (n) +S* (n) - l , i w > 3 , 
m m -1 m -2 

S*(n) = n9 S*(n) = [not], a = * + 5 . 

Since (8) is a generalized Fibonacci sequence, it is easy to show that 

(10) Sm(n) = Fm_1[na] + nFm_2, n ^ 0 a n d m > l . 

The terms of {Sm(n))2,1 for 1 _< m <_ 7 and -10 < n £ 10, n ^ 0, are pre-
sented in Table 1. 

TABLE 1 

sj^r<^ 
Siin) 
S2(n) 

S3M 

Sh(n) 

S5M 
S6(n) 

S7(n) 

S m ( n ) \ ^ 

S1(.n) 

S2(n) 

Ss(n) 
Sk(n) 

S5(n) 

Se(n) 

S7(n) 

-10 

-10 

-17 

-27 

-44 

-71 

-115 

-186 

1 

1 

1 

2 

3 

5 

8 

13 

-9 

-9 

-15 

-24 

-39 

-63 

-102 

-165 

2 

2 

3 

5 

8 

13 

21 

31 

-8 

-8 

-13 

-21 

-34 

-55 

-89 

-144 

3 

3 

4 

7 

11 

18 

29 

47 

-7 

-7 

-12 

-19 

-31 

-50 

-81 

-131 

4 

4 

6 

10 

16 

26 

42 

68 

-6 

-6 

-10 

-16 

-26 

-42 

-68 

-110 

5 

5 

8 

13 

21 

34 

55 

89 

-5 

-5 

-9 

-14 

-23 

-37 

-60 

-97 

6 

6 

9 

15 

24 

39 

63 

102 

-4 

-4 

-7 

-11 

-18 

-29 

-47 

-76 

7 

7 

11 

18 

29 

47 

76 

123 

-3 

-3 

-5 

-8 

-13 

-21 

-34 

-55 

8 

8 

12 

20 

32 

52 

84 

136 

-2 

-2 

-4 

-6 

-10 

-16 

-26 

-42 

9 

9 

14 

23 

37 

60 

97 

157 

-1 

-1 

-2 

-3 

-5 

-8 

-13 

-21 

10 

10 

16 

26 

42 

68 

110 

178 

One of the first observations made was that some of the rows appear to 
be subsets of previous rows. A more careful examination implies that for a 
specific n the positive and negative values for a given row are related by 
the Fibonacci numbers. The latter result is stated as Theorem 5, while the 
former is Theorem 6. 

ThdOtim 5: For all integers n £ 0, Sm(n) + Sm(-n) = -Fm_19 m >. 1. 

The proof of Theorem 5 is a direct result of (10) and is thus omitted. 

Th.Z0K.2Jfn 6: For any integer m _> 3 and any integer n + 0, 

Sm(n) = Sm_2(S3(n)). 
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Vtioofc By d e f i n i t i o n , S1(S3(n)) = S3(n)9 so t h e theorem i s t r u e i f m = 3 . 
By Theorem 4 we have 

Sh(n) =S3(n) + S2(n) = 2[na] +n= [ [na]a + na] 

= S2([na] + n) = S2(S 3 ( n ) ) , 

so that the result is true for m = 4. 

Assuming the theorem true for all positive integers m <_ k where ^ 4 , 
we have 

Sk + 1(n) = Sk(n) + Sk_1{n) =Sk.2{S3{n)) + Sk_3{S3(n)) =Sk_1(S3(n)) 

and the theorem is proved. 

An immediate consequence of Theorem 6 is 

(11) {S1(n)} D{Sh(n)} D{S,(n)} D {SQ(n)} D ... 
and 
(12) {53(n)} D {S5(n)} D {S7(n)} 2 {s9(n)} D ... . 

By the theorem of Skolem and Bang, we have 

{S2{n)rn__x n{53(n)}; = 1 = 0. 

Using this result and Theorem 5, it is easy to see that 

Hence {S2 (n)} H {#3 (n)} = 0 and {5m(n)} H {^^(n)} = 0 for all TW >. 3. That 
is5 no row has any elements in common with the row immediately preceding it. 

We now turn our attention to an investigation of the columns of Table 1. 
To do this, we use C^ to represent the ith column. You will, after extend-
ing the number of columns, see that 

C1 3 C2 D C5 2 CY 3 2 C 3h ... 

C 3 D C7 D C1Q =2 C\7 =2 C123 ... 
and 

^4 3 ^10 3 ^2 6 - ^6 8 =̂  ̂ 17 8 • " * 

Analyzing the subscripts, we are led to conjecture that, for all integers 
n 1 0, 

(13) CSl(n) 3 CS3(n) 3 CS5(n) 3 CS7(n) 2 CS9(n) 3 - - • -

In proving this, we arrived at what we believe is an interesting commutative 
property of this set of sequences. 

Jkzonm 7: If w > 1, then S3 (S2m _x (n) ) = £2m _1(53(n) ) 

P/L00f$: The theorem is obviously true for m = 1 and m = 2. Furthermore, by 
Theorem 6 and the induction hypothesis, we have 

S^S2m+x{n)) =53(S2m.1(53(n))) = S 2m _x{s 3{S 3{n))) = S2m + 1(S3 (n) ) , 

and the theorem is proved. 

Since S2m_x (S3(n)) = S^S^^in)), we have 

(14) S s f o - i W ) =Si(Sa, +iW). 

Furthermore, by Theorems 6 and 7, 

(15) S*(S2m-i(.n)) - fir2(s3(52BI _ ! ( « ) ) ) = S 2 ( S 2 m + 1 ( n ) ) . 
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Together, (14) and (15) tell us that 

for all m > 1. This result proves the validity of (13). 

We now turn our attention to the sequences {S* (n)}™ = 1. The elements 
for the first seven sequences are given for -10 <_ n £ 10 in Table 2. An ex-
amination of this table leads to results that are very similar to those as-
sociated with {Sm(n)}m=i• A number of these proofs are omitted, since they 
are similar to the proofs of their counterpart theorems. 

TABLE 2 

^ \ ^ n 
m N ' \ 

S\(n) 

S*(n) 

S*M 
S*(n) 

S*(n) 

S*(n) 

S*(n) 

Sj'(n) 

S*(n) 

S*(n) 

S*(n) 

S*(n) 

S*(n) 

S*7(n) 

-10 

-10 

-17 

-28 

-46 

-75 

-122 

-198 

0 

0 

0 

-1 

-2 

-4 

-7 

-12 

-9 

-9 

-15 

-25 

-41 

-67 

-109 

-177 

1 

1 

1 

1 

1 

1 

1 

1 

-8 

-8 

-13 

-22 

-36 

-59 

-96 

-156 

2 

2 

3 

4 

6 

9 

14 

22 

-7 

-7 

-12 

-20 

-33 

-54 

-88 

-143 

3 

3 

4 

6 

9 

14 

22 

35 

4 

4 

6 

9 

14 

22 

35 

56 

-6 

-6 

-10 

-17 

-28 

-46 

-75 

•122 

5 

5 

8 

12 

19 

30 

48 

77 

-5 

-5 

-9 

.-15 

-25 

-41 

-67 

-109 

6 

6 

9 

14 

22 

35 

56 

90 

-4 

-4 

-7 

-12 

-20 

-33 

-54 

-88 

7 

7 

11 

17 

27 

43 

69 

111 

-3 

-3 

-5 

-9 

-15 

-25 

-41 

-67 

8 

8 

12 

19 

30 

48 

77 

124 

-2 

-2 

-4 

-7 

-12 

-20 

-33 

-54 

9 

9 

14 

22 

35 

56 

90 

145 

-1 

-1 

-2 

-4 

-7 

-12 

-20 

-33 

10 

10 

16 

25 

40 

64 

103 

166 

Tk<lOK.2m 8: I f 777 i s an i n t e g e r and m _> 1, then 

S*(n) = [na}Fm_1 + nFm_2 - Fm + 1. 

Tko.OK.2Jfn 9: I f 777 i s an i n t e g e r and 777 >. 1, n ^ 0 , then 

5*(n) +S*{-n) = -Fm+2 + 2 . 

Tfoeo/iem 7 0: I f m ^ 2 i s an i n t e g e r and n ^ 0 , then 
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The proof of Theorem 10 is similar to the proof of Theorem 6, except 
that one needs Theorem 1 to show that S%(n) = S*(S*(n)). The rest of the 
proof is omitted. 

An immediate consequence of Theorem 10 is that if we omit the column 
when n = 0, then every row is a subset of every row preceding it. That is, 

(17) {S*(n)} D {S*(n)} D {S*(n)} D.{S*(n)} D {S*(n)} ..., 

provided n ̂  0. 
Using an inductive argument similar to that of Theorem 7, one can show 

Th&OKm 17: If m >_ 1 is an integer and n ± 0, 

s*(s*(n)) = s*(s*(n)). 
Combining Theorems 10 and 11, we have 

(18) S*{S*(.n)) = S*(S*(n)) = S*+1(n) = S*{S*+1W), n j 0, 

and 

(19) S${S*(n)) - S*(s*(S*(n))) = S*(s*(S*(n))) = S$(S*+1(n)), n + 0. 

Together, (18) and (19) yield 

(20) Cli + 1M £ Ckw> 
for all integers m _> 1, n ± 0, where C£ is the ith column of Table 2. 

The next results whose proof we omit, since it is by mathematical in-
duction, establishes a relationship between Table 1 and Table 2. 

Tfieo/ieJTi lit If 777 is an integer, m >_ 1, n + 0, then S*(n) = Sm(n) - Fm + 1. 

Using the fact that S*(n) = S2(n) in Theorem 10 and applying Theorem 
12, we have 

Sm + 1(n) + 1 - Fm + 1 = S*+1(.n) = S*{S*(n)) = Sm(S2(n)) - Fm + 1 
or 

(21) ^ + i>) = Sm(S2W) + Fm_19 n J 0. 
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On p. 326 of The Fibonacci Quarterly 12, No. 4 (1974), Charles W. Trigg 
gave a formula for the radius of a circle which touches three given circles 
which, in turn, touch each other externally. 

The following is a more general formula: 


