SOME REMARKS ON THE BELL NUMBERS
 LEONARD CARLITZ
 Duke University, Durham, NC 27706

1. The Bell numbers A_{n} can be defined by means of the generating function,

$$
\begin{equation*}
e^{e^{x}-1}=\sum_{n=0}^{\infty} A_{n} \frac{x^{n}}{n!} \tag{1.1}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
A_{n+1}=\sum_{k=0}^{n}\binom{n}{k} A_{k} . \tag{1.2}
\end{equation*}
$$

Another familiar representation is

$$
\begin{equation*}
A_{n}=\sum_{k=0}^{n} S(n, \mathcal{k}), \tag{1.3}
\end{equation*}
$$

where $S(n, k)$ denotes a Stirling number of the second kind [3, Ch. 2].
The definition (1.1) suggests putting

$$
\begin{equation*}
e^{a\left(e^{x}-1\right)}=\sum_{n=0}^{\infty} A_{n}(\alpha) \frac{x^{n}}{n!} ; \tag{1.4}
\end{equation*}
$$

$A_{n}(\alpha)$ is called the single-variable Bell polynomial. It satisfies the relations

$$
\begin{equation*}
A_{n+1}(\alpha)=\alpha \sum_{k=0}^{n}\binom{n}{k} A_{k}(\alpha) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{n}(\alpha)=\sum_{k=0}^{n} a^{k} S(n, k) . \tag{1.6}
\end{equation*}
$$

(We have used A_{n} and $A_{n}(\alpha)$ to denote the Bell numbers and polynomials rather than B_{n} and $B_{n}(\alpha)$ to avoid possible confusion with Bernoulli numbers and polynomia1s [2, Ch. 2].)

Cohn, Ever, Menger, and Hooper [1] have introduced a scheme to facilitate the computation of the A_{n}. See also [5] for a variant of the method. Consider the following array, which is taken from [1].

$A_{n, k}:$| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 1 | 2 | 5 | 15 | 52 | 203 |
| 1 | 2 | 3 | 7 | 20 | 67 | 255 | 1080 |
| 2 | 5 | 10 | 27 | 87 | 322 | 1335 | |
| 3 | 15 | 37 | 114 | 409 | 1657 | | |
| 4 | 52 | 151 | 523 | 2066 | | | |
| 5 | 203 | 674 | 2589 | | | | |
| 6 | 877 | 3263 | | | | | |

The $A_{n, k}$ are defined by means of the recurrence

$$
\begin{equation*}
A_{n+1, k}=A_{n, k}+A_{n, k+1} \quad(n \geq 0) \tag{1.7}
\end{equation*}
$$

together with $A_{00}=1, A_{01}=1$. It follows that

$$
\begin{equation*}
A_{0, k}=A_{k}, A_{n, 0}=A_{k+1} . \tag{1.8}
\end{equation*}
$$

The definition of $A_{n}(\alpha)$ suggests that we define the polynomial $A_{n, k}(\alpha)$ by means of

$$
\begin{equation*}
A_{n+1, k}(\alpha)=A_{n, k}(\alpha)+A_{n, k+1}(\alpha) \quad(n \geq 0) \tag{1.9}
\end{equation*}
$$

together with

$$
A_{00}(\alpha)=1, A_{01}(\alpha)=\alpha .
$$

We then have

$$
\begin{equation*}
A_{0, k}(0)=A_{k}(\alpha), \alpha A_{n, 0}(\alpha)=A_{n+1}(\alpha) . \tag{1.10}
\end{equation*}
$$

For $a=1$, (1.10) evidently reduces to (1.8).
2. Put
and

$$
\begin{equation*}
F(x, z)=\sum_{n=0}^{\infty} F_{n}(z) \frac{x^{n}}{n!}=\sum_{n, k=0}^{\infty} A_{n, k} \frac{x^{n} z^{k}}{n!k!} . \tag{2.1}
\end{equation*}
$$

It follows from (2.1) and the recurrence (1.7) that

$$
\begin{equation*}
F_{n+1}(z)=F_{n}(z)+F_{n}^{\prime}(z) . \tag{2.3}
\end{equation*}
$$

It is convenient to write (2.3) in the operational form

$$
\begin{equation*}
F_{n+1}(z)=\left(1+D_{z}\right) F_{n}(z) \quad\left(D_{z} \equiv \frac{d}{d z}\right) \tag{2.4}
\end{equation*}
$$

Iteration leads to

$$
\begin{equation*}
F_{n}(z)=\left(1+D_{z}\right)^{n} F_{0}(z) \quad(n \geq 0) . \tag{2.5}
\end{equation*}
$$

Since, by (1.1) and (1.8), $F_{0}(z)=e^{e^{z}-1}$, we get

$$
\begin{equation*}
F_{0}(z)=\left(1+D_{z}\right)^{n} e^{e^{z}-1} \tag{2.6}
\end{equation*}
$$

Incidentally, (2.5) is equivalent to

$$
\begin{equation*}
A_{n, k}=\sum_{j=0}^{n}\binom{n}{j} A_{j+k}=\sum_{j=0}^{n}\binom{n}{j} A_{k+n-j} \tag{2.7}
\end{equation*}
$$

The inverse of (2.7) may be noted:

$$
\begin{equation*}
A_{n+k}=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} A_{j, k} \tag{2.8}
\end{equation*}
$$

Making use of (2.5), we are led to a definition of $A_{n, k}$ for negative n. Replacing n by $-n$, (2.5) becomes

$$
\left(1+D_{z}\right)^{n} F_{-n}(z)=F_{0}(z)
$$

Thus, if we put

Feb.

$$
\begin{equation*}
F_{-n}(z)=\sum_{k=n}^{\infty} A_{-n, k} \frac{z^{k}}{k!}, \tag{2.9}
\end{equation*}
$$

we have

$$
\sum_{j=0}^{n}\binom{n}{j} A_{-n, j+k}=A_{k} \quad(k=0,1,2, \ldots) .
$$

It can be verified that (2.10) is satisfied by

$$
\begin{equation*}
A_{-n, k}=\sum_{j=0}^{k-n}(-1)^{j}\binom{j+n-1}{j} A_{k-n-j}=\sum_{j=0}^{k-n}\binom{-n}{j} A_{k-n-j} . \tag{2.11}
\end{equation*}
$$

Indeed, it is enough to take

$$
\begin{aligned}
A_{-n, k}+A_{-n, k+1} & =\sum_{j=0}^{k-n}(-1)^{j}\binom{j+n-1}{j} A_{k-n-j}+\sum_{j=0}^{k-n+1}(-1)^{j}\binom{j+n-1}{j} A_{k-n-j+1} \\
& =\sum_{j}(-1)^{j} A_{j-n-j+1}\left\{\binom{j+n-1}{j}-\binom{j+n-2}{j-1}\right\} \\
& =\sum_{j=0}^{k-n+1}(-1)^{j}\binom{j+n-2}{j} A_{k-n-j+1}
\end{aligned}
$$

so that
(2.12)

$$
A_{-n, k}+A_{-n, k+1}=A_{-n+1, k}
$$

and (2.10) follows by induction on n.
Note that by (2.9)

$$
(2.13)
$$

$$
A_{-n, k}=0 \quad(0 \leq k<n)
$$

The following table of values of $A_{-n, k}$ is computed by means of (2.12) and (2.13). Put

6	0	0	0	0	0	0	1	-5
5	0	0	0	0	0	1	-4	12
4	0	0	0	0	1	-3	8	-13
3	0	0	0	1	-2	5	-5	54
2	0	0	1	-1	3	0	49	105
1	0	1	0	2	3	49	154	723
0	1	1	2	5	52	203	877	4140
n / k	0	1	2	3	4	5	6	7

Clearly,

$$
\begin{equation*}
A_{-n, n}=1 \quad(n=0,1,2, \ldots) \tag{2.14}
\end{equation*}
$$

Put

$$
G \equiv G(x, z)=\sum_{n=0}^{\infty} F \quad(z) x \quad=\sum_{k=0}^{\infty} \frac{z}{n!} \sum_{n=0}^{k} A_{-n, k} x^{n} .
$$

Then, since by (2.12),

$$
\left(1+D_{z}\right) F_{-n}(z)=F_{-n-1}(z) \quad(n>0)
$$

we have

$$
\left(1+D_{z}\right) G=x G+F_{1}(z) ;
$$

that is,

$$
D G+(-x) G=F_{1}(z)=\left(1+e^{z}\right) e^{e^{z}-1}
$$

This differential equation has the solution

$$
\begin{equation*}
e^{(1-x) z} G=\int_{0}^{z} e^{(1-x)}\left(1+e^{t}\right) e^{e^{t}-1} d t+\phi(x) \tag{2.15}
\end{equation*}
$$

where $\phi(x)$ is independent of z.
For $z=0,(2.15)$ reduces to

$$
G(x, 0)=\phi(x) .
$$

By (2.15)
and, therefore

$$
G(x, 0)=A_{0,0}=1
$$

$$
\begin{equation*}
G(x, z)=e^{(-1-x) z} \int_{0}^{z} e^{(1-x) t}\left(1+e^{t}\right) e^{e^{t}-1} d t+e^{-(1-x) z} \tag{2.16}
\end{equation*}
$$

In the next place, by (2.2) and (2.5),

$$
F(x, z)=\sum_{n=0}^{\infty} \frac{x^{n}\left(1+D_{z}\right)^{n}}{n!} F_{0}(z)=e^{x\left(1+D_{z}\right)} F_{0}(z) .
$$

Since

$$
e^{x D_{z}} F_{0}(z)=F_{0}(x+z),
$$

we get

$$
\begin{equation*}
F(x, z)=e^{x} F_{0}(x+z)=e^{x} e^{e^{x+z}-1} \tag{2.17}
\end{equation*}
$$

It follows from (2.5) that

$$
\begin{equation*}
e^{z} F(x, z)=e^{x} F(z, x), \tag{2.18}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{j=0}^{k}\binom{k}{j} A_{n, j}=\sum_{j=0}^{n}\binom{n}{j} A_{k, j} . \tag{2.19}
\end{equation*}
$$

Using (2.7), it is easy to give a direct proof of (2.10).
3. The results of $\S 2$ are easily carried over to the polynomial $A_{n}(\alpha)$. Put
and

$$
\begin{align*}
F_{n}(z \mid \alpha) & =\sum_{k=0}^{\infty} A_{k}(\alpha) \frac{z^{k}}{k!} \tag{3.1}\\
F(x, z \mid a) & =\sum_{n=0}^{\infty} F_{n}(z \mid a) \frac{x^{n}}{n!} \tag{3.2}
\end{align*}
$$

It follows from (1.9) and (3.1) that

$$
\begin{equation*}
F_{n+1}(z \mid \alpha)=\left(1+D_{z}\right) F_{n}(z \mid \alpha), \tag{3.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
F_{n}(z \mid \alpha)=\left(1+D_{z}\right)^{n} F_{0}(z \mid \alpha)=\left(1+D_{z}\right)^{n} e^{\alpha\left(e^{z}-1\right)} . \tag{3.4}
\end{equation*}
$$

Thus,

Feb.

$$
\begin{equation*}
A_{n, k}(\alpha)=\sum_{j=0}^{n}\binom{n}{j} A_{j+k}(\alpha) . \tag{3.5}
\end{equation*}
$$

As in §2, we find that

$$
\begin{equation*}
F(x, z \mid \alpha)=e^{x} F_{0}(x+z \mid \alpha) \tag{3.6}
\end{equation*}
$$

so that

$$
\begin{equation*}
e^{z} F(x, z \mid \alpha)=e^{x} F(z, x \mid \alpha) \tag{3.7}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{k}{j} A_{n, j}=\sum_{j=0}^{n}\binom{n}{j} A_{j, k} \tag{3.8}
\end{equation*}
$$

By (1.4),

$$
\sum_{k=0}^{\infty} A_{k}(a) \frac{x^{k}}{k!}=e^{\alpha\left(e^{x}-1\right)}
$$

Thus (3.6) becomes

$$
\begin{equation*}
F(x, z \mid \alpha)=e^{x} e^{a\left(e^{x+z}-1\right)} \tag{3.9}
\end{equation*}
$$

Differentiation with respect to α yields

$$
\sum_{n, k=0}^{\infty} A_{n, k}^{\prime}(\alpha) \frac{x^{n} z^{k}}{n!k!}=\left(e^{x+z}-1\right) \sum_{n, k=0}^{\infty} A_{n, k}(\alpha) \frac{x^{n} z^{k}}{n!k!}
$$

and therefore

$$
\begin{equation*}
A_{n, k}^{\prime}(\alpha)=\sum_{\substack{i=0 \\ i+j<n+k}}^{n} \sum_{\substack{j=0}}^{k}\binom{n}{i}\binom{k}{j} A_{i, j}(\alpha) \tag{3.10}
\end{equation*}
$$

Similarly, differentiation with respect to z gives

$$
\sum_{n, k=0}^{\infty} A_{n, k+1}(\alpha) \frac{x^{n} z^{k}}{n!k!}=a e^{x+y} \sum_{n, k=0}^{\infty} A_{n, k}(a) \frac{x^{n} z^{k}}{n!k!}
$$

so that

$$
\begin{equation*}
A_{n, k+1}(\alpha)=\alpha \sum_{i=0}^{n} \sum_{j=0}^{k}\binom{n}{i}\binom{k}{j} A_{i, j}(\alpha) . \tag{3.11}
\end{equation*}
$$

Comparing (3.11) with (3.10), we get

$$
\begin{equation*}
A_{n, k+1}(\alpha)=\alpha A_{n, k}(\alpha)+A_{n, k}^{\prime}(\alpha) \tag{3.12}
\end{equation*}
$$

Differentiation of (3.9) with respect to x leads again to (1.9).
4. It follows from (1.3) and (2.7) that

Since

$$
\begin{gather*}
A_{n, k}=\sum_{i=0}^{n}\binom{n}{i} A_{k+i}=\sum_{i=0}^{n}\binom{n}{i} \sum_{j=0}^{k+i} S(k+i, j) . \tag{4.1}\\
S(n, j)=\frac{1}{j!} \sum_{t=0}^{j}(-1)^{j-t}\binom{j}{t} t^{k+i}
\end{gather*}
$$

it follows from (4.1) that
where

$$
\begin{equation*}
A_{n, k}=\sum_{j=0}^{k+n} S(n, k, j) \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
S(n, k, j)=\frac{1}{j!} \sum_{t=0}^{j}(-1)^{j-t}\binom{j}{t} t^{k}(t+1)^{n} \tag{4.3}
\end{equation*}
$$

Clearly, $S(0, k, j)=S(k, j)$.
In the next place, by (4.1) or (4.3), we have

$$
\begin{equation*}
\sum_{k, n=0}^{\infty} S(n, k, j) \frac{x^{k} y^{n}}{k!n!}=\frac{e^{y}}{j!}\left(e^{x+y}-1\right) \tag{4.4}
\end{equation*}
$$

Differentiation with respect to x gives

$$
\begin{aligned}
\sum_{k, n=0}^{\infty} S(n, k+1, j) \frac{x^{k} y^{n}}{k!n!} & =e^{x+y} \cdot \frac{e^{y}}{(j-1)!}\left(e^{x+y}-1\right)^{j-1} \\
& =\frac{e^{y}}{(j-1)!}\left(e^{x+y}-1\right) \dot{j}+\frac{e^{y}}{(j-1)!}\left(e^{x+y}-1\right)^{j-1}
\end{aligned}
$$

so that

$$
\text { (4.5) } \quad S(n, k+1, j)=S(n, k, j-1)+j S(n, k, j)
$$

generalizing the familiar formula

$$
S(k+1, j)=S(k, j-1)+j S(k, j)
$$

Differentiation of (4.4) with respect to x gives

$$
\sum_{k, n=0}^{\infty} S(n+1, k, j)=\frac{e^{y}}{j!}\left(e^{x+y}-1\right)^{j}+e^{x+y} \cdot \frac{e^{y}}{(j-1)!}\left(e^{x+y}-1\right)^{j-1}
$$

and, therefore

$$
\text { (4.6) } \quad S(n+1, k, j)=S(n, k, j)+S(n, k+1, j)
$$

This result can be expressed in the form

$$
\begin{equation*}
\Delta_{n} S(n, k, j)=S(n, k+1, j) \tag{4.7}
\end{equation*}
$$

where Δ_{n} is the partial difference operator. We can also view (4.6) as the analog of (1.7) for $S(k, n, j)$.

Since $S(0, k, j)=S(k, j)$, iteration of (4.6) yields

$$
\begin{equation*}
S(n, k, j)=\sum_{i=0}^{n}\binom{n}{i} S(k+i, j) \tag{4.8}
\end{equation*}
$$

We recall that

$$
x^{k}=\sum_{j=0}^{k} S(k, j) x(x-1) \ldots(x-j+1)
$$

Hence, it follows from (4.8) that

$$
\begin{equation*}
(x+1)^{n} x^{k}=\sum_{j=0}^{n+k} S(n, k, j) x(x-1) \ldots(x-j+1) . \tag{4.9}
\end{equation*}
$$

Replacing x by $-x$, (4.9) becomes

$$
\begin{equation*}
(x-1)^{n} x^{k}=\sum_{j=0}^{n+k}(-1)^{n+k-j} S(n, k, j) x(x+1) \ldots(x+j-1) \tag{4.10}
\end{equation*}
$$

5. To get a combinatorial interpretation of $A_{n, k}$, we recall [4] that A_{k} is equal to the number of partitions of a set of cardinality n. It is helpful to sketch the proof of this result.

Let \bar{A}_{k} denote the number of partitions of the set $S_{k}=\{1,2, \ldots, k\}$, $k=1,2,3, \ldots$, and put $\bar{A}_{0}=1$. Then \bar{A}_{k+1} satisfies

$$
\begin{equation*}
\bar{A}_{k+1}=\sum_{j=0}\binom{k}{j} \bar{A}_{j}, \tag{5.1}
\end{equation*}
$$

since the right member enumerates the number of partitions of the set S_{k+1}, as the element $k+1$ is in a block with $0,1,2, \ldots, k$ additional elements. Hence, by (1.2),

$$
\bar{A}_{k}=A_{k} \quad(k=0,1,2, \ldots)
$$

For $A_{n, k}$ we have the following combinatorial interpretation.
Theorem 1: Put $S=\{1,2, \ldots, n\}, T=\{n+1, n+2, \ldots, n+k\}$. Then, $\overline{A_{n, k}}$ is equal to the number of partitions of all sets $R \cup T$ as R runs through the subsets (the null set included) of S.

The proof is similar to the proof of (5.1), but makes use of (2.7), that is

$$
\begin{equation*}
A_{n, k}=\sum_{j=0}^{n}\binom{n}{j} A_{j+k} . \tag{5.2}
\end{equation*}
$$

It suffices to observe that the right-hand side of (5.2) enumerates the partitions of all sets obtained as union of T and the various subsets of S.

For $n=0$, it is clear that (5.2) gives A_{k}; for $k=0$, we get A_{n+1}.
The Stirling number $S(k, j)$ is equal to the number of partitions of the set $1,2, \ldots, k$ into j nonempty sets. The result for $S(n, k, j)$ that corresponds to Theorem 1 is the following.
Theorem 2: Put $S=\{1,2, \ldots, n\}, T=\{n+1, n+2, \ldots, n+k\}$. Then, $\overline{S(n, k, j)}$ is equal to the number of partitions into j blocks of all sets $R \cup T$ as R runs through the subsets (the null set included) of S.

The proof is similar to the proof of Theorem 1 , but makes use of (4.8), that is,

$$
\begin{equation*}
S(n, k, j)=\sum_{i=0}^{n}\binom{n}{i} S(k+i, j) . \tag{5.3}
\end{equation*}
$$

REFERENCES

1. M. Cohn, S. Even, K. Menger, \& P. K. Hooper. "On the Number of Partitions of a Set of n Distinct Objects." American Math. Monthly 69 (1962): 782-785.
2. N.E. Nörlund. Vorlesungen über Differenzenrechnung. Berlin: Springer, 1924.
3. J. Riordan. An Introduction to Combinatorial Analysis. New York: John Wiley \& Sons, Inc., 1958.
4. G.-C. Rota. "The Number of Partitions of a Set." American Math. Monthly 71 (1964):498-504.
5. J. Shallit. "A Triangle for the Be11 Numbers." The Fibonacci QuarterZy, to appear.

SOME LACUNARY RECURRENCE RELATIONS

A. G. SHANNON

The New South Wales Institute of Technology, Sydney, Australia
and
Oxford University, Linacre College, England

1. INTRODUCTION

Kirkpatrick [4] has discussed aspects of linear recurrence relations which skip terms in a Fibonacci context. Such recurrence relations are called "lacunary" because there are gaps in them where they skip terms. In the same issue of this journal, Berzsenyi [1] posed a problem, a solution of which is also a lacunary recurrence relation. These are two instances of a not infrequent occurrence.

We consider here some lacunary recurrence relations associated with sequences $\left\{\omega_{n}^{(r)}\right\}$, the elements of which satisfy the linear homogeneous recurrence relation of order r :

$$
\omega_{n}^{(r)}=\sum_{j=1}^{r}(-1)^{j+1} P_{r j} \omega_{n-j}^{(r)}, n>r,
$$

with suitable initial conditions, where the $P_{r j}$ are arbitrary integers. The sequence, $\left\{v_{n}^{(r)}\right\}$, with initial conditions given by

$$
v_{n}^{(r)}=\left\{\begin{array}{lr}
0 & n<0 \\
\sum_{j=1}^{r} \alpha_{r j}^{n} & 0 \leq n<r
\end{array}\right.
$$

is called the "primordial" sequence, because when $r=2$, it becomes the primordial sequence of Lucas [6]. The $\alpha_{r j}$ are the roots, assumed distinct, of the auxiliary equation

$$
x^{r}=\sum_{j=1}^{r}(-1)^{j+1} P_{r j} x^{r-j}
$$

We need an arithmetical function $\delta(m, s)$ defined by

$$
\delta(m, s)=\left\{\begin{array}{lll}
1 & \text { if } & m \mid s \\
0 & \text { if } & m / s
\end{array}\right.
$$

We also need $s(r, m, j)$, the symmetric functions of the $\alpha_{r i}^{m}, i=1,2, \ldots, r$, taken j at a time, as in Macmahon [5]:

$$
s(r, m, j)=\sum \alpha_{r i_{1}}^{m} \alpha_{r i_{2}}^{m} \ldots \alpha_{r i_{j}}^{m}
$$

in which the sum is over a distinct cycle of $\alpha_{r i}^{m}$ taken j at a time and where we set $s(r, m, 0)=1$.

