ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN

University of New Mexico, Albuquerque, NM 87131

Send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to PROFESSOR A. P. HILLMAN, 709 Solano Dr., S.E., Albuquerque, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
and

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1
$$

$$
L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
$$

Also a and b designate the roots $(1+\sqrt{5}) / 2$ and $(1-\sqrt{5}) / 2$, respectively, of $x^{2}-x-1=0$.

PROBLEMS PROPOSED IN THIS ISSUE
B-418 Proposed by Herta T. Freitag, Roanoke, VA
Prove or disprove that $n^{15}-n^{3}$ is an integral multiple of $2^{15}-2^{3}$ for all integers n.

B-419 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
For i in $\{1,2,3,4\}$, establish a congruence

$$
F_{n} L_{5 k+i} \equiv \alpha_{i} n L_{n} F_{5 k+i}(\bmod 5)
$$

with each α_{i} in $\{1,2,3,4\}$.
B-420 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
Let
$g(n, k)=F_{n+10 k}^{4}+F_{n}^{4}-\left(L_{4 k}+1\right)\left(F_{n+8 k}^{4}+F_{n+2 k}^{4}\right)+L_{4 k}\left(F_{n+6 k}^{4}+F_{n+4 k}^{4}\right)$.
Can one express $g(n, k)$ in the form $L_{r} F_{s} F_{t} F_{u} F_{v}$ with each of r, s, t, u, and v linear in n and k ?

B-421 Proposed by V.E.Hoggatt, Jr., San Jose State University, San Jose, CA
Let $\left\{u_{n}\right\}$ be defined by the recursion $u_{n+3}=u_{n+2}+u_{n}$ and the initial conditions $u_{1}=1, u_{2}=2$, and $u_{3}=3$. Prove that every positive integer N has a unique representation

$$
\begin{aligned}
N= & \sum_{i=1}^{n} c_{i} u_{i}, \text { with } c_{n}=1, \text { each } c_{i} \varepsilon\{0,1\} \\
& c_{i} c_{i+1}=0=c_{i} c_{i+2} \text { if } 1 \leq i \leq n-2
\end{aligned}
$$

Feb. 1980
ELEMENTARY PROBLEMS AND SOLUTIONS

B-422 Proposed by V.E. Hoggatt, Jr., San Jose State University, San Jose, CA
With representations as in $B-421$, let

$$
N=\sum_{i=1}^{n} c_{i} u_{i}, N+1=\sum_{i=1}^{m} d_{i} u_{i}
$$

Show that $m \geq n$ and that if $m=n$ then $d_{k}>c_{k}$ for the largest k with

$$
c_{k} \neq d_{k}
$$

B-423 Proposed by Jeffery Shallit, Palo Alto, CA
Here let F_{n} be denoted by $F(n)$. Evaluate the infinite product

$$
\left(1+\frac{1}{2}\right)\left(1+\frac{1}{13}\right)\left(1+\frac{1}{610}\right) \cdots=\prod_{n=1}^{\infty}\left[1+\frac{1}{F\left(2^{n+1}-1\right)}\right]
$$

SOLUTIONS

Note by Paul S. Bruckman, Concord, CA:
There is an omission in the published solution to B-371 (Feb. 1979, p. 91). The set of residues (mod 60) should include 55 and consists of 24 elements.

Triple Products and Binomial Coefficients
B-394 Proposed by Phil Mana, Albuquerque, NM
Let $P(x)=x(x-1)(x-2) / 6$. Simplify the following expression:
$P(x+y+z)-P(y+z)-P(x+z)-P(x+y)+P(x)+P(y)+P(z)$.
I. Solution by C. B. A. Peck, State College, PA

Let $G(x, y, z)$ denote the given expression. Clearly,

$$
G(0, y, z)=G(x, 0, z)=G(x, y, 0)=0
$$

Since the total degree of G in x, y, z is at most 3 , this means that

$$
G=k x y z, \text { with } k \text { constant. }
$$

Then $G(1,1,1)=1$ implies that $k=1$ and $G=x y z$.
II. Generalization by L. Carlitz, Duke University, Durham, NC

We shall prove the following more general result. Let

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}
$$

be an arbitrary polynomial of degree $\leq n$ and put

$$
\begin{aligned}
S_{n} & =S_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =f\left(x_{1}+x_{2}+\cdots+x_{n}\right)-\Sigma f\left(x_{1}+\cdots+x_{n-1}\right) \\
& +\Sigma f\left(x_{1}+\cdots+x_{n-2}\right)-\cdots+(-1)^{n} f(0),
\end{aligned}
$$

where the first sum is over all sums of $n-1$ of the x_{j}, the second over all sums of $n-2$ of the x_{j}, etc. Then

$$
\begin{equation*}
S_{n}=a_{0} n!x_{1} x_{2} \cdots x_{n} . \tag{*}
\end{equation*}
$$

Proof: Put

$$
\begin{aligned}
S\left(n, k ; x_{1}, \cdots, x_{k}\right)=\left(x_{1}\right. & \left.+\cdots+x_{k}\right)^{n}-\Sigma\left(x_{1}+\cdots+x_{k-1}\right)^{n} \\
& +\Sigma\left(x_{1}+\cdots+x_{k-2}\right)^{n}-\cdots,
\end{aligned}
$$

where the summations have the same meaning as in the definition of S_{n}, except that we now have k indeterminates.

It follows from the definition that
(**)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} S\left(n, k ; x_{1}, \ldots, x_{k}\right) \frac{z}{n!} \\
= & e^{\left(x_{1}+\cdots+x_{k}\right) z}-\sum e^{\left(x_{1}+\cdots+x_{k-1}\right) z}+\sum e^{\left(x_{1}+\cdots+x_{k-2}\right) z} \\
= & \left(e^{x_{1} z}-1\right)\left(e^{x_{2} z}-1\right) \cdots\left(e^{x_{k} z}-1\right) .
\end{aligned}
$$

Hence, comparing coefficients of z^{n}, we get

$$
S\left(n, k ; x_{1}, \ldots, x_{k}\right)=\left\{\begin{array}{lll}
0 & (0 \leq n<k) \\
k!x_{1} \cdots x_{k} & (n=k)
\end{array}\right.
$$

The assertion (*) is an immediate consequence.
For $n=3, a=\frac{1}{6}$, (*) reduces to the required result.
Remark: For $x_{1}=\cdots=x_{k}=1$, it is clear that ($* *$) reduces to

$$
\sum_{n=0}^{\infty} S(n, k ; 1, \ldots, 1) \frac{z^{n}}{n!}=\left(e^{z}-1\right)^{k}
$$

Hence,

$$
S(n, k ; 1, \ldots, 1)=k!S(n, k)
$$

where

$$
S(n, k)=\frac{1}{k} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{n},
$$

a Stirling number of the second kind.
Also solved by Mangho Ahuja, Paul S. Bruckman, Herta T. Freitag, Graham Lord, John W. Milsom, Charles B. Shields, Sahib Singh, Gregory Wulczyn, and the proposer.
Reciprocals of Golden Powers

B-395 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA Let $c=(\sqrt{5}-1) / 2$. For $n=1,2, \ldots$, prove that

$$
1 / F_{n+2}<c^{n}<1 / F_{n+1} .
$$

```
Solution by Sahib Singh, Clarion State College, Clarion, PA
```

 Since \(c=\frac{1}{a}\), it suffices to show that \(F_{n+2}>a^{n}>F_{n+1}\). Consider
 $$
F_{n+2}-a^{n}=\frac{a^{n+2}-b^{n+2}}{a-b}-a^{n}(a+b)=b^{2} F_{n}
$$

Similarly, $a^{n}-F_{n+1}=-b F_{n}$ 。
Since b is negative, the conclusion follows.
Also solved by Mangho Ahuja, Clyde A. Bridger, Paul S. Bruckman, Herta T. Freitag, Graham Lord, C. B. A. Peck, Bob Prielipp, E. D. Robinson, Charles B. Shields, Lawrence Somer, and the proposer.

> Multiples of Ten

B-396 Based on the solution to B-371 by Paul S. Bruckman, Concord, CA
Let $G_{n}=F_{n}\left(F_{n}+1\right)\left(F_{n}+2\right)\left(F_{n}+3\right) / 24$. Prove that 60 is the smallest positive integer m such that $10 \mid G_{n}$ implies $10 \mid G_{n+m}$.

Solution by Paul S. Bruckman, Concord, $C A$
In $B-371$, it was shown that $10 \mid G_{n}$ iff $n \equiv r(\bmod 60)$, where r is any of 24 possible given residues (mod 60). Thus,

$$
n \equiv r(\bmod 60) \Longleftrightarrow 10\left|G_{n} \Rightarrow 10\right| G_{n} \Longleftrightarrow n+m \equiv r(\bmod 60)
$$

or, equivalently,

$$
n \equiv r(\bmod 60) \Rightarrow n+m \equiv r(\bmod 60) \Rightarrow m \equiv 0(\bmod 60) \Rightarrow 60 m
$$

Clearly, the smallest m with this property is $m=60$, since any multiple of 60 (including 60 itself) has the property. See note after B-423.
Also solved by C. B. A. Peck, Sahib Singh, Lawrence Somer, \& Gregory Wulczyn.
Semi-Closed Form

B-397 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
Find a closed form for the sum

$$
\sum_{k=0}^{2 s}\binom{2 s}{k} F_{n+k t}^{2}
$$

Note: The proposer intended t to be odd but this condition was inadvertently omitted by the elementary problems editor. The solution which follows gives a closed form for t even and for t odd.

Solution by Paul S. Bruckman, Concord, CA
Let

Then

$$
\theta_{2 s, n, t}=\sum_{k=0}^{2 s}\binom{2 s}{k} F_{n+k t}^{2}
$$

$$
\theta_{2 s, n, t}=\frac{1}{5} \sum_{k=0}^{2 s}\binom{2 s}{k}\left\{a^{2 n+2 k t}-2(-1)^{n+k t}+b^{2 n+2 k t}\right\}
$$

$$
=\frac{1}{5}\left\{a^{2 n}\left(1+a^{2 t}\right)^{2 s}-2(-1)^{n}\left\{1+(-1)^{t}\right\}^{2 s}+b^{2 n}\left(1+b^{2 t}\right)^{2 s}\right\}
$$

or

$$
\begin{align*}
\theta_{2 s, n, t}=\frac{1}{5}\left\{\alpha ^ { 2 n + 2 s t } \left(\alpha^{t}\right.\right. & \left.+\alpha^{-t}\right)^{2 s}+b^{2 n+2 s t}\left(b^{t}+b^{-t}\right)^{2 s} \tag{1}\\
& \left.-2^{2 s+1}(-1)^{n}\left(\frac{1+(-1)^{t}}{2}\right)\right\}
\end{align*}
$$

We may distinguish two cases, in order to further simplify (1):

$$
\theta_{2 s, n, 2 u}=\frac{1}{5}\left\{\left(a^{2 n+4 s u}+b^{2 n+4 s u}\right)\left(a^{2 u}+b^{2 u}\right)^{2 s}-(-1)^{n} 2^{2 s+1}\right\},
$$

$$
\theta_{2 s, n, 2 u}=\frac{1}{5}\left(L_{2 n+4 s u} L_{2 u}^{2 s}-(-1)^{n} 2^{2 s+1}\right) ;
$$

a1so

$$
\theta_{2 s, n, 2 u+1}=\frac{1}{5}\left(a^{2 n+2 s(2 u+1)}+b^{2 n+2 s(2 u+1)}\right)\left(a^{2 u+1}-b^{2 u+1}\right)^{2 s},
$$

$$
\begin{equation*}
\theta_{2 s, n, 2 u+1}=5^{s-1} L_{2 n+2 s(2 u+1)} F_{2 u+1}^{2 s} . \tag{3}
\end{equation*}
$$

Also solved for t odd by the proposer.

The Added Ingredient

B-398 Proposed by Herta T. Freitag, Roanoke, VA
Is there an integer K such that

$$
K-F_{n+6}+\sum_{j=1}^{n} j^{2} F_{j}
$$

is an integral multiple of n for all positive integers n ?
Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI
According to (17) on p. 215 of the October 1965 issue of this journal,

$$
\sum_{k=0}^{n} k^{2} F_{k}=\left(n^{2}+2\right) F_{n+2}-(2 n-3) F_{n+3}-8
$$

Since $F_{n+6}=3 F_{n+3}+2 F_{n+2}$, it follows that

$$
8-F_{n+6}^{\prime}+\sum_{j=1}^{n} j^{2} F_{j}=n\left(n F_{n+2}-2 F_{n+3}\right)
$$

where n is an arbitrary positive integer.
Also solved by Paul S. Bruckman, Sahib Singh, Gregory Wulczyn, and the proposer.

Not Quite Tribonacci

B-399 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, CA
Let $f(x)=u_{1}+u_{2} x+u_{3} x^{2}+\cdots$ and $g(x)=v_{1}+v_{2} x+v_{3} x^{2}+\cdots$ where $u_{1}=u_{2}=1, u_{3}=2, u_{n+3}=u_{n+2}+u_{n+1}+u_{n}$, and $v_{n+3}=v_{n+2}+v_{n+1}+v_{n}$. Find initial values v_{1}, v_{2}, and v_{3} so that $e^{g(x)}=f(x)$.
I. No such series exists.

Demonstration by Jonathan Weitsman, College Station, $T X$
The equation $e^{g(x)}=f(x)$ leads to $v_{1}=0, v_{2}=1, v_{3}=3 / 2$, and $v_{4}=$ $7 / 3$. These values contradict the given recursion for the $v^{\prime} s$.
II. Correction and solution by Paul S. Bruckman, Concord, CA

There is an error in the statement of the problem. One correct rewording would be to replace " $g(x)$ " where it first occurs by " g ' (x) ".

Note that $u_{n}=T_{n+2}$, where $\left(T_{n}\right)_{n=0}^{\infty}=(0,0,1,1,2,4,7,13,24, \ldots)$ is the Tribonacci sequence; also $f(x)=\left(1-x-x^{2}-x^{3}\right)^{-1}$, the well-known generating function for the Tribonacci numbers.

Since the v_{n} 's satisfy the same recursion, it follows that

$$
g^{\prime}(x)=p(x) f(x)
$$

where p is some quadratic polynomial. But, if we are to have

$$
f(x)=\exp (g(x))
$$

then $g(x)=\log (f(x))$, and $g^{\prime}(x)=f^{\prime}(x) / f(x)$. Hence,

$$
p(x)=f^{\prime}(x) / f^{2}(x)=-\frac{d}{d x}(1 / f(x))=-\frac{d}{d x}\left(1-x-x^{2}-x^{3}\right)=1+2 x+3 x^{2}
$$

Therefore,

$$
g^{\prime}(x)=\frac{1+2 x+3 x^{2}}{1-x-x^{2}-x^{3}} \text { and } g(x)=c-\log \left(1-x-x^{2}-x^{3}\right)
$$

for some constant c. Since $g(0)=\log (f(0))=\log 1=0=c-\log 1=c-0=$ c, thus $g(x)=-\log \left(1-x-x^{2}-x^{3}\right)$.

$$
\begin{aligned}
& \text { Now } g^{\prime}(x)=p(x) f(x)=\left(1+2 x+3 x^{2}\right) \sum_{n=0}^{\infty} T_{n+2} x^{n} \text {; hence, } \\
& \qquad \begin{aligned}
g^{\prime}(x) & =\sum_{n=0}^{\infty} T_{n+2} x^{n}+2 \sum_{n=1}^{\infty} T_{n+1} x^{n}+3 \sum_{n=2}^{\infty} T_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left(T_{n+2}+2 T_{n+1}+3 T_{n}\right) x^{n}=\sum_{n=0}^{\infty} v_{n+1} x^{n}
\end{aligned}
\end{aligned}
$$

which implies $v_{n+1}=T_{n+2}+2 T_{n+1}+3 T_{n}, n=0,1,2, \ldots$. Thus, $v_{1}=1+$ $0+0=1 ; v_{2}=1+2+0=3 ;$ and $v_{3}=2+2+3=7$. The first few terms of the series for $g(x)$ are as follows:

$$
g(x)=-\log \left(1-x-x^{2}-x^{3}\right)=\frac{1 x}{1}+\frac{3 x^{2}}{2}+\frac{7 x^{3}}{3}+\frac{11 x^{4}}{4}+\frac{21 x^{5}}{5}+\frac{39 x^{6}}{6}+\ldots .
$$

