RECURRENCES FOR TWO RESTRICTED PARTITION FUNCTIONS

6137

JOHN A. EWELL

Northern Illinois University, DeKalb, IL 60115

In this note we shall develop two "pure" recurrences for determination of the functional values q(n) and $q_0(n)$. Accordingly, we recall that for a given natural number n, q(n) denotes the number of partitions of n into distinct parts (or, equivalently, the number of partitions of n into odd parts), and $q_0(n)$ denotes the number of partitions of n into distinct odd parts (or, equivalently, the number of self-conjugate partitions of n). As usual, p(n)denotes the number of unrestricted partitions of n; and, conventionally, we set $p(0) = q(0) = q_0(0) = 1$. Previous tables of values for $q_0(n)$ and q(n)have been constructed on the strength of known tables for p(n); for example, see [1] and [3]. The recurrences of the following two theorems allow us to determine $q_0(n)$ and q(n) without prior knowledge of p(n).

Theorem 1: For each nonnegative integer n,

(1)
$$\sum_{k=0}^{k} (-1)^{k(k+1)/2} \cdot q_0(n - k(k+1)/2) = \begin{cases} (-1)^m, \text{ if } n = m(3m \pm 1) \\ 0, \text{ otherwise.} \end{cases}$$

Theorem 2: For each nonnegative integer n,

(2)
$$q(n) + 2\sum_{k=1}^{\infty} (-1)^k \cdot q(n-k^2) = \begin{cases} (-1)^m, \text{ if } n = m(3m \pm 1)/2 \\ 0, \text{ otherwise.} \end{cases}$$

In both theorems, summation is extended over all values of the indices which yield nonnegative integral arguments of q_0 and q.

Our proofs will depend on the following three identities of Euler and Gauss [2, p. 284]:

(3)
$$\prod_{n=1}^{\infty} (1 - x^n) = 1 + \sum_{n=1}^{\infty} (-1)^n \left\{ x^{(3n^2 - n)/2} + x^{(3n^2 + n)/2} \right\}.$$

(4)
$$\prod_{n=1}^{\infty} (1 - x^{2n}) = \prod_{n=1}^{\infty} (1 + x^{2n-1}) \cdot \sum_{n=0}^{\infty} (-x)^{n(n+1)/2}$$

(5)
$$\prod_{n=1}^{\infty} (1 - x^n) = \prod_{n=1}^{\infty} (1 + x^n) \left\{ 1 + 2 \sum_{n=1}^{\infty} (-1)^n \cdot x^{n^2} \right\}.$$

<u>Proof of Theorem 1</u>: Replace x by x^2 in (3) and eliminate $\Pi(1 - x^{2n})$ between the resulting identity and (4) to obtain

$$\sum_{n=0}^{\infty} q_0(n) x^n \cdot \sum_{n=0}^{\infty} (-x)^{n(n+1)/2} = 1 + \sum_{m=1}^{\infty} (-1)^m \left\{ x^{3m^2 - m} + x^{3m^2 + m} \right\}.$$

[Recall that $\Pi(1 + x^{2n-1})$ generates $q_0(n)$.] The complete expansion of the left side of the foregoing equation is:

$$\sum_{n=0}^{\infty} x^n \sum_{k=0}^{\infty} (-1)^{k(k+1)/2} q_0 (n - k(k+1)/2).$$

Equating coefficients of x^n , we obtain the desired conclusion. [Note that $q_0(0) = 1$ is consistent with the statement of our theorem.]

<u>Proof of Theorem 2</u>: In view of the fact that $\Pi(1 + x^n)$ generates q(n), identities (3) and (5) imply

$$\left\{\sum_{n=0}^{\infty} q(n)x^{n}\right\}\left\{1+2\sum_{n=1}^{\infty} (-1)^{n}x^{n^{2}}\right\} = 1+\sum_{m=1}^{\infty} (-1)^{m}\left\{x^{(3m^{2}-m)/2}+x^{(3m^{2}+m)/2}\right\},$$

or, equivalently,

$$\sum_{n=0}^{\infty} x^n \left\{ q(n) + \sum_{k=1}^{\infty} (-1)^k \cdot 2q(n-k^2) \right\} = 1 + \sum_{m=1}^{\infty} (-1)^m \left\{ x^{(3m^2-m)/2} + x^{(3m^2+m)/2} \right\}.$$

Upon equating coefficients of x^n , we derive the recurrence.

REMARKS

The following table of values for $q_0(n)$, q(n), and p(n), n = 0(1)25, is included to show the relative rates of growth of the three functions. For example, $q_0(n)$ grows much more slowly with n than does p(n). So, computing a list of values of $q_0(n)$ by using "large" p(n) values is much less desirable than by use of the recurrence (1).

TABLE	1
-------	---

n	q ₀ (n)	q (n)	p(n)	n	q ₀ (n)	q(n)	p(n)
0	1	1	1	13	3	18	101
1	1	1	1	14	3	22	135
2	0	1	2	15	4	27	176
3	1	2	3	16	5	32	231
4	1	2	5	17	5	38	297
5	1	3	7	18	5	46	385
6	1	4	11	19	6	54	490
7	1	5	15	20	7	64	627
8	2	6	22	21	8	76	792
9	2	7	30	22	8	89	1002
10	2	10	42	23	9	104	1255
11	2	12	56	24	11	122	1575
12	3	15	77	25	12	142	1958

REFERENCES

- 1. J. A. Ewell. "Partition Recurrences." J. Combinatorial Theory, Ser.A, 14 (1973):125-127.
- 2. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. 4th ed. Oxford: Clarendon Press, 1960.
- 3. G. N. Watson. "Two Tables of Partitions." *Proc. London Math. Soc.* (2), 42 (1937):550-556.

.