RECURRENCES FOR TWO RESTRICTED PARTITION FUNCTIONS

JOHN A. EWELL
Northern Illinois University, DeKalb, IL 60115
In this note we shall develop two "pure" recurrences for determination of the functional values $q(n)$ and $q_{0}(n)$. Accordingly, we recall that for a given natural number $n, q(n)$ denotes the number of partitions of n into distinct parts (or, equivalently, the number of partitions of n into odd parts), and $q_{0}(n)$ denotes the number of partitions of n into distinct odd parts (or, equivalently, the number of self-conjugate partitions of n). As usual, $p(n)$ denotes the number of unrestricted partitions of n; and, conventionally, we set $p(0)=q(0)=q_{0}(0)=1$. Previous tables of values for $q_{0}(n)$ and $q(n)$ have been constructed on the strength of known tables for $p(n)$; for example, see [1] and [3]. The recurrences of the following two theorems allow us to determine $q_{0}(n)$ and $q(n)$ without prior knowledge of $p(n)$.
Theorem 1: For each nonnegative integer n,

$$
\sum_{k=0}(-1)^{k(k+1) / 2} \cdot q_{0}(n-k(k+1) / 2)=\left\{\begin{array}{c}
(-1)^{m}, \tag{1}\\
0, \text { if } n=m(3 m \pm 1) \\
0, \text { otherwise } .
\end{array}\right.
$$

Theorem 2: For each nonnegative integer n,

$$
q(n)+2 \sum_{k=1}(-1)^{k} \cdot q\left(n-k^{2}\right)=\left\{\begin{array}{c}
(-1)^{m}, \text { if } n=m(3 m \pm 1) / 2 \tag{2}\\
0, \text { otherwise } .
\end{array}\right.
$$

In both theorems, summation is extended over all values of the indices which yield nonnegative integral arguments of q_{0} and q.

Our proofs will depend on the following three identities of Euler and Gauss [2, p. 284]:

$$
\begin{align*}
& \prod_{n=1}^{\infty}\left(1-x^{n}\right)=1+\sum_{n=1}^{\infty}(-1)^{n}\left\{x^{\left(3 n^{2}-n\right) / 2}+x^{\left(3 n^{2}+n\right) / 2}\right\} \tag{3}\\
& \prod_{n=1}^{\infty}\left(1-x^{2 n}\right)=\prod_{n=1}^{\infty}\left(1+x^{2 n-1}\right) \cdot \sum_{n=0}^{\infty}(-x)^{n(n+1) / 2} \tag{4}\\
& \prod_{n=1}^{\infty}\left(1-x^{n}\right)=\prod_{n=1}^{\infty}\left(1+x^{n}\right)\left\{1+2 \sum_{n=1}^{\infty}(-1)^{n} \cdot x^{n^{2}}\right\} \tag{5}
\end{align*}
$$

Proof of Theorem 1: Replace x by x^{2} in (3) and eliminate $\Pi\left(1-x^{2 n}\right.$) between the resulting identity and (4) to obtain

$$
\sum_{n=0}^{\infty} q_{0}(n) x^{n} \cdot \sum_{n=0}^{\infty}(-x)^{n(n+1) / 2}=1+\sum_{m=1}^{\infty}(-1)^{m}\left\{x^{3 m^{2}-m}+x^{3 m^{2}+m}\right\}
$$

[Recall that $\Pi\left(1+x^{2 n-1}\right)$ generates $\left.q_{0}(n).\right]$ The complete expansion of the left side of the foregoing equation is:

$$
\sum_{n=0}^{\infty} x^{n} \sum_{k=0}(-1)^{k(k+1) / 2} q_{0}(n-k(k+1) / 2)
$$

Equating coefficients of x^{n} ，we obtain the desired conclusion．［Note that $q_{0}(0)=1$ is consistent with the statement of our theorem．］
Proof of Theorem 2：In view of the fact that $\Pi\left(1+x^{n}\right)$ generates $q(n)$ ，iden－ tities（3）and（5）imply

$$
\left\{\sum_{n=0}^{\infty} q(n) x^{n}\right\}\left\{1+2 \sum_{n=1}^{\infty}(-1)^{n} x^{n^{2}}\right\}=1+\sum_{m=1}^{\infty}(-1)^{m}\left\{x^{\left(3 m^{2}-m\right) / 2}+x^{\left(3 m^{2}+m\right) / 2}\right\}
$$

or，equivalently，

$$
\sum_{n=0}^{\infty} x^{n}\left\{q(n)+\sum_{k=1}(-1)^{k} \cdot 2 q\left(n-k^{2}\right)\right\}=1+\sum_{m=1}^{\infty}(-1)^{m}\left\{x^{\left(3 m^{2}-m\right) / 2}+x^{\left(3 m^{2}+m\right) / 2}\right\}
$$

Upon equating coefficients of x^{n} ，we derive the recurrence．
REMARKS
The following table of values for $q_{0}(n), q(n)$ ，and $p(n), n=0(1) 25$ ，is included to show the relative rates of growth of the three functions．For example，$q_{0}(n)$ grows much more slowly with n than does $p(n)$ ．So，computing a list of values of $q_{0}(n)$ by using＂large＂$p(n)$ values is much less desirable than by use of the recurrence（1）．

TABLE 1

n	$q_{0}(n)$	$q(n)$	$p(n)$	n	$q_{0}(n)$	$q(n)$	$p(n)$
0	1	1	1	13	3	18	101
1	1	1	1	14	3	22	135
2	0	1	2	15	4	27	176
3	1	2	3	16	5	32	231
4	1	2	5	17	5	38	297
5	1	3	7	18	5	46	385
6	1	4	11	19	6	54	490
7	1	5	15	20	7	64	627
8	2	6	22	21	8	76	792
9	2	7	30	22	8	89	1002
10	2	10	42	23	9	104	1255
11	2	12	56	24	11	122	1575
12	3	15	77	25	12	142	1958

REFERENCES

1．J．A．Ewel1．＂Partition Recurrences．＂J．CombinatoriaZ Theory，Ser．A， 14 （1973）：125－127．
2．G．H．Hardy \＆E．M．Wright．An Introduction to the Theory of Numbers． 4th ed．Oxford：Clarendon Press， 1960.
3．G．N．Watson．＂Two Tables of Partitions．＂Proc．London Math．Soc．（2）， 42 （1937）：550－556．

