J. S. FRAME

Michigan State University, East Lansing, MI 48823

1. INTRODUCTION

Interesting problems and patterns in algebra, number theory, and numerical computation have arisen in the attempt to prove or disprove a conjecture known as Fermat's Last Theorem [7], namely that for odd primes p there are no rational integral solutions x, y, z, with $xyz \neq 0$ to the equation

(1.1)
$$x^p + y^p + z^p = 0.$$

Several proofs of special cases involve the prime factors of the determinant D_n of the $n \ge n$ binomial circulant matrix B_n with (i, j)-entry

$$\binom{n}{|i-j|}.$$

Thus in 1919 Bachmann [1] proved that (1.1) has no solutions prime to p unless $p^3 | D_{p-1}$, and in 1935 Emma Lehmer [6] proved the stronger requirement, $p^{p-1} | D_{p-1}$, mentioning that $D_n = 0$ iff n = 6k, and giving the values of D_{p-1} for $3 \le p \le 17$. Later, in 1959-60, L. Carlitz published two papers [2, 3] concerning the residues of D_{p-1} modulo powers of p, including the theorem that (1,1) is solvable with $xyz \ne 0$ only if $D_{p-1} \equiv 0 \pmod{p^{p+43}}$. Our methods give, for example when p = 47, the prime factorization

 $(1.2) \quad -D_{46} = 3 \cdot 47^{45} (139^{4} 461^{2} 599^{4} 691^{4} 829^{2} 1151^{2} 2347^{2} 3313^{2} 178481 \cdot 2796203)^{3}$

Clearly, a nontrivial solution of (1.1) would require that for all primes q not dividing xyz we should have

(1.3)
$$1 + (y/x)^p \equiv (-z/x)^p \pmod{q}$$
.

For each such prime p and for all primes q = $1 \, + \, np$ not divisors of xyz , we should have

(1.4)
$$(1 + (y/x)^p)^n \equiv 1 \pmod{q}$$
.

Thus, all primes q = 1 + np except the finite number that divide xyz must divide the corresponding D_n , which is the resolvent of $v^n - 1$ and $(v + 1)^n - v^n$.

Our concern in this paper is to characterize and compute the rational prime factors of the determinant D_n , an integer of about $0.1403n^2$ digits, when $n \neq 0 \pmod{6}$. The 351-digit integer $-D_{50}$ was found to have 127 prime factors, counting multiplicities as high as 24 for the factor 101.

To factor D_n we first note that its $n \times n$ binomial circulant matrix B_n is a polynomial in the $n \times n$ circulant matrix P_n for the permutation (1 2 3 ... n), whose eigenvalues are powers of a primitive nth root of unity, r, and that D_n is the product of the eigenvalues of B_n . Thus, as in [5],

(1.5)
$$B_n = (I_n + P_n)^n - I_n$$

(1.6)
$$D_n = \prod_{k=1}^n ((1 + r^k)^n - 1), \text{ where } r = e^{2\pi i/n}.$$

For example, when n = 4,

$$(1.7) \qquad P_{\mu} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \qquad B_{\mu} = \begin{bmatrix} 1 & 4 & 6 & 4 \\ 4 & 1 & 4 & 6 \\ 6 & 4 & 1 & 4 \\ 4 & 6 & 4 & 1 \end{bmatrix} = (I_{\mu} + P_{\mu})^{\mu} - I_{\mu}$$

$$(1.8) \quad D_{4} = ((1+i)^{4} - 1)(0^{4} - 1)((1-i)^{4} - 1)(2^{4} - 1) = -3 \cdot 5^{3}.$$

Factoring the difference of two nth powers in (1.6) yields

(1.9)
$$D_n = \prod_{k=1}^n \prod_{j=1}^n ((1+r^k)r^j - 1) = (-1)^n \prod_{j=1}^n \prod_{k=1}^n (1-r^j - r^k).$$

Theorem 1.1 (E. Lehmer [6]): $D_n = 0$ if and only if 6 | n.

<u>Proof</u>: A factor $(1 - r^j - r^k)$ in (1.9) can vanish if and only if $r^k = r^{-j}$, and $r^{6j} = 1$.

Henceforth we assume $n \not\equiv 0 \pmod{6}$.

Experimental evidence indicates that for $n \leq 50$,

(1.10)
$$|\log_{10}|D_n| - n^2 \log_{10}G| < 0.33$$
, if $n \neq 0 \pmod{6}$.

where G is the limit as $n \to \infty$ of the geometric mean of the n^2 factors $|1 - r^j - r^k|$ of $(-1)^{n-1}D_n$. If $u - v = \theta$, we have

(1.11)
$$\ln G = \pi^{-2} \int_0^{\pi} \int_0^{\pi} \ln |1 - e^{2iu} - e^{2iv}| du dv$$
$$= \pi^{-2} \int_0^{\pi} \int_0^{\pi} \ln |2 \cos \theta - e^{-2i\phi}| d\phi d\theta.$$

The inner integral vanishes if $|2 \cos \theta| < 1$, and we obtain

(1.12)
$$\ln G = (2/\pi) \int_0^{\pi/3} \ln(2 \cos \theta) d\theta = (2/\pi) \int_0^{\pi/6} \theta \cot \theta d\theta$$

(1.13)
$$\log_{10} G = (0.32306594722...)/\ln(10) = 0.14030575817...$$

Missing factors in the tables were detected by (1.10), and found.

Our challenge is to assemble the n^2 complex factors of (1.9) into subsets having rational integral products which we call "principal" factors, and then factor these positive integers into their rational prime factors. We find that $(-1)^{n-1}D_n/(2^n - 1)$ is always a square, that $-D_{2n}/3$ is a cube, and that for odd *n* the sum $F_{n-1} + F_{n+1}$ of two Fibonacci numbers is a double factor of D_n , of about 1 + n/5 digits, which is frequently prime. For example, D_{47} and D_{53} have respectively as double factors the primes $F_{46} + F_{48} = 6,643,838,879$ and $F_{52} + F_{54} = 119,218,851,371$. Tables 1 and 2 list the prime factors of D_n other than $2^n - 1$ for 16 odd values of *n*.

TABLE 1

FACTORS $q_p^{(tu)}$ OF d_p , where p is prime, AND UNDERLINED FACTORS ARE $q_p^{(-u)}$

и	d ₁₉	d ₂₃	d ₂₉	d ₃₁	d ₃₇	d_{41}	d ₄₃	d ₄₇
2	9349	139•461	59•19489	3010349	54018521	370248521	969323029	6643838879
3	1483	47•139	65657	5 ³ •1117	1385429	83•77081	431•31907	941•67399
4	229	1151	9803	27901	132313	83 ³	952967	283•11939
5	<u>761</u>	599	59 ²	5953	149•223	101107	173•1033	549149
6	647	<u>3313</u>	24071	20089	67489	83 ³	516689	1693 • 2351
7	229	47 ²	18503	16741	149•1259	<u>83•3691</u>	173• 6967	6450751
8	419	47 ²	59•233	46439	325379	988511	1124107	1352191
9	191	2347	4931	38069	223•1481	821•1559	745621	7145599
10		<u>599</u>	18097	34721	172717	1335781	173 • 2337	283•36943
11		691	59•349	5953	146891	83•6397	2532701	1223 • 2663
12			12413	2 ⁵ •1489	262553	791629	1549•1721	10032151
13			<u>59²</u>	$2^{5} \cdot 683$	149•223	348911	1144919	2069•5077
14			59 ²	2 ⁵ •311	332039	<u>83 • 12301</u>	1999243	3462961
15				6263	<u>149•1999</u>	206477	173•1033	1932923
16					68821	1024099	431 • 5591	<u>941 • 8179</u>
17					223 • 593	739 • 1723	173•10837	4220977
18					32783	340793	<u>173•11783</u>	5187109
19						101107	431 • 3613	<u>1129 • 6863</u>
20						83 • 1231	533459	1754323
21							178021	<u>659 • 3761</u>
22								549149
23								549431

TABLE 2

FACTORS $\overline{q}_n^{(u)}$ OF \overline{d}_n FOR COMPOSITE ODD n

и	ā,	<i>d</i> ₁₅	ā ₂₁	\bar{d}_{25}	ā ₂₇	\bar{d}_{33}	\bar{d}_{35}	ā ₃₉
3 : p		271	2269			176419		157 • 10141
5:p 2	19	31	211	101 • 151	5779	9901	38851 71•911	79 • 859
3	37	31	379	1301	811	67 ²	7351	22777
-3	19	2 ⁴	43		487	2971		6553
4 5 -5	1	2 ² •1* 61 31	7 43	3851 1151 6101	919 109	67 463	3361 2381 3011	547 79•3 ³
6 -6 7	-	1 61 1	463 1 43	151 251	433 163	331 3631 199	41* 29* 7841	79 ² 1249 157
-7			547		163		71 ²	
8			1•7*	401	2269	859	71	$79 \cdot 3^{3}$
9 -9			43 43	1151	$19441 \\ 19927$	2311 397	701	1171 3511
10			7 ²	5801	1	43*	71 • 281	
-10 11 -11				1951 101	757	1* 67 • 661 25411	71 ² 71	1249 3121
12 -12 13 -13				101	109 109 271	1 67 • 199 67	421 5741	79•937 1 79•2887 398581
14 -14 15						331 397	118301 4271 911	1* 103* 1171
-15 16						463 67	211 ² 2381	13183 157
17							211	1483
18								313•3 ³
-18 19								79•3 ³ 157

*If $u^2 \equiv 1 \pmod{n}$, $\left(\overline{q}_n^{(u)} \overline{q}_n^{(-u)}\right)^{1/2}$ replaces $\overline{q}_n^{(u)}$ in \overline{d}_n .

2. PRINCIPAL INTEGRAL FACTORS OF D_n

For *n* odd, we extract from D_n in (1.9) the product $1 - 2^n$ of *n* factors with j = k, the product 1 of the 2(n - 1) factors with $j = n \neq k$ or $k = n \neq j$, and the product $q_n^{(-1)}$ of the n - 1 real factors with j + k = n, and are left with (n - 1)(n - 3) factors whose product d_n^2 is a perfect square because of symmetry in j and k.

.

Theorem 2.1: For n odd, we have

(2.1) $D_n = (2^n - 1)q_n^{(-1)}d_n^2,$

where $q_n^{(-1)} = 4$ if 3|n, $q_n^{(-1)} = 1$ if $n \equiv \pm 1 \pmod{6}$, and d_n is a product of (n-1)(n-3)/4 conjugate complex factor pairs, namely

(2.2)
$$d_n = \prod_{0 < j < k < n-j} (1 - r^j - r^k) (1 - r^{-j} - r^{-k}), r = e^{2\pi i/n}$$

<u>*Proof*</u>: The product of the (n - 1) real factors of (1.9) with $1 \le j \le n - 1$ is

$$q_{n}^{(-1)} = \prod_{j=1}^{n-1} (1 - r^{j} - r^{-j}) = \prod_{j=1}^{n-1} (-r^{-j}) (r^{j} + \omega) (r^{j} + \overline{\omega})$$
$$= 1 \cdot (1 + \omega^{n}) (1 + \omega^{-n}) = (\omega^{n/2} + \omega^{-n/2})^{2}$$

(2.3)

where
$$\omega = e^{2\pi i/3}$$
. This is 4 if $3|n$, or 1 if $n \equiv \pm 1 \pmod{6}$. Of the remaining complex factors with $j + k \neq n$, those with $j + k > n$ are the complex conjugates of those with $j + k < n$. Just half the factors of d_n^2 yield d_n , so we take $i \leq k$ in (2.2).

For even dimension 2n we replace $-r^{j}$ and $-r^{k}$ in (1.9) by s^{j+n} and s^{k+n} , where $s = e^{\pi i/n}$ and $s^{n} = -1$. The factor with 3 equal summands is 1 + 1 + 1 = 3, and the 3(2n - 1) factors with 2 equal summands have the product

$$-((4^n - 1)/3)^3$$

Since 3/n, we can divide each of the (2n - 1)(2n - 2) remaining factors by the geometric mean of its 3 summands so the new factors have distinct summands with product 1.

Theorem 2.2: For even dimension
$$2n$$
, we have

(2.4)
$$D_{2n} = -3((4^n - 1)/3)^3 g_{2n}^6,$$

= $(2 \cos \pi n/3)^2$

where g_{2n} is the product of (n - 1)(n - 2)/3 conjugate complex factor pairs

(2.5)
$$g_{2n} = \prod_{0 < j < k < n - j/2} |s^j + s^k + s^{-j-k}|^2, \ s = e^{\pi i/n}.$$

<u>Proof</u>: Extracting from D_{2n} the factors with repeated summands leaves a product of (2n - 1)(2n - 2) factors with distinct summands

(2.6)
$$-9D_{2n}/(4^{n}-1)^{3} = \prod_{j,k,i=1}^{2n} (s^{j}+s^{k}+s^{j}), s^{j+k+i} = 1,$$

 $i, j, k \text{ distinct.}$

We omit the 3(2n - 2) factors with product 1 having i, j, or k = 2n. Symmetry in i, j, k shows that each remaining factor is repeated six times, so we call the product g_{2n}^{δ} , where in g_{2n} we assume $1 \le j < k < i < 2n$. Since factors with j + k + i = 4n are the complex conjugates of factors with j + k + i = 2n, we replace i by 2n - j - k and s^i by s^{-j-k} to obtain (2.5).

<u>Theorem 2.3</u>: For odd n = 2m + 1 not divisible by 3, $g_{2n} = d_n h_n$ where h_n is the product of m(m - 2)/3 factor pairs

(2.7)
$$h_n = g_{2n}/d_n = \prod_{0 \le j \le k \le (n-j)/2} |r^j + r^k + r^{-j-k}|^2, r = e^{2\pi i/n}.$$

<u>Proof</u>: The m(m - 2)/3 factor pairs in (2.5) with j and k both even yield the factor pairs of h_n in (2.7). We next delete the m factor pairs in (2.5) for which j or k equals n - j - k, since $s^n = -1$ and these factors have the product 1. In the remaining m(m - 1) factor pairs having two summands with odd exponents, we multiply these two summands by $-s^n = 1$ to create even exponents, divide the factor by the third summand, set $s^2 = r$, and obtain precisely the factors of d_n in (2.2).

Note that (2.4) and (2.7) imply that for $n \equiv \pm 1 \pmod{6}$

(2.8)
$$-D_{2n}/D_n^3 = 3^{-2}(2^n + 1)^3h_n^6$$
, if $n = \pm 1 \pmod{6}$.

<u>Theorem 2.4</u>: For n = 2m not divisible by 6, $g_{2n} = g_n k_n$, where k_n is the product of m(m - 1) factor pairs:

(2.9)
$$k_n = g_{2n}/g_n = \prod_{0 < j < k < 2n-j} |1 + s^j + s^k|^2, j, k \text{ odd, } s = e^{\pi i/n}.$$

<u>Proof</u>: The (m - 1)(m - 2)/3 factor pairs in (2.5) having j and k both even yield the factor pairs of g_n for even n. We obtain the remaining m(m - 1) factor pairs for k_n in (2.9) by dividing each of the remaining factors of g_{2n} by its summand with even exponent.

If desired, we can remove the [m/2] factor pairs with product 1 in (2.9) for which k = n + j. For example, when m = 2, one of the two factor pairs in $k_4 = g_8/g_4$ can be removed, leaving

(2.10)
$$k_{\mu} = g_{\beta}/g_{\mu} = |1 + s + s^3|^2 = |1 + i\sqrt{2}|^2 = 3, \ s = e^{\pi i/4}.$$

Since $g_4 = g_2 = d_1 = 1$, we have $D_8 = -3(85)^3 \cdot 3^6 = -3^7 \cdot 5^3 \cdot 17^3$. The reduced integral factors \overline{d}_n of d_n and \overline{h}_n of h_n are products of those complex factors of (2.2) or (2.7) in which j, k, n have no common factor.

The extended principal factors of d_n , h_n , and k_{2n} are products of those complex factors of d_n , h_n , or k_{2n} in which the exponent ratios k;j are constant (mod n). They are rational integers, since they are symmetric functions of roots of unity. In such an extended principal factor $q_n^{(v:u)}$, we assume u, v relatively prime and replace (j,k) by (vj,uj) where 0 < j < n. For $\overline{d_n}$ and $\overline{h_n}$ we restrict j to a reduced set of residues (mod n) denoted R_n , in which (j,n) = 1. We define the extended principal factors $q_n^{(v:u)}$ and the principal factors $\overline{q_n}^{(v:u)}$ by

(2.11)
$$q_n^{(v:u)} = \pm \prod_{j=1}^{n-1} (1 - p^{vj} - p^{uj}) > 0, \ q_n^{(u)} = q_n^{(1:u)} = q_n^{(u:1)}$$

(2.12)
$$\overline{q}_{n}^{(\nu:u)} = \pm \prod_{j \in R_{n}} (1 - \nu^{\nu j} - \nu^{u j}) > 0, \ \overline{q}_{n}^{(u)} = \overline{q}_{n}^{(1:u)} = \overline{q}_{n}^{(u:1)}$$

where $r = e^{2\pi i/n}$. The corresponding integral factors of k_n or h_n with complex factors $(1 + r^{vj} + r^{uj})$ are denoted by $q_{n+}^{(v:u)}$, etc. Factors of $q_{n+}^{(v:u)}$ for which (j,n) = n/f divide $q_{f+}^{(v:u)}$ for divisors f of n.

For calculations with a calculator that computes cosine functions, the following factors are useful. We set

(2.13)
$$\overline{f}_n^{(y;x)} = \pm \prod_{j \in R_n} (c_{yj} + c_{yj}^{-1} - c_{xj}) > 0, \ (x,y) = 1$$

where $c_k = r^k + r^{-k} = 2 \cos 2\pi k/n$, and where R'_n denotes the set of $\varphi(n)/2$ residues $j \in R_n$ with j < n/2.

$$\frac{\text{Theorem 2.5:}}{(2.14)} \quad \text{If } 2x = (u+v), \ 2y = u-v, \text{ then} \\ \overline{f_n}^{(y;x)} = \overline{q_n}^{(v:u)}, \ \overline{f_n}^{(v;u)} = \overline{q_n}^{(y;x)}, \ n \text{ odd.}$$

Proof:

(2.15)
$$\overline{q}_{n}^{(v:u)} = \prod_{j \in R_{n}^{\prime}} |1 - r^{vj} - r^{uj}|^{2} = \prod_{j \in R_{n}^{\prime}} (3 + c_{2yj} - c_{vj} - c_{uj})$$
$$= \prod_{j \in R_{n}^{\prime}} (1 + c_{2j}^{2} - c_{yj}c_{xj}) = \pm \prod_{j \in R_{n}^{\prime}} (c_{yj} + c_{jj}^{-1} - c_{xj})$$

since the product of the c_{yj} is ±1. Solving for u, v in terms of x, y yields the second part of (2.14)

Theorem 2.6: If n = 2m + 1 is a prime p > 3, then

(2.16)
$$d_p = \prod_{u=2}^m q_p^{(\varepsilon u)}, \varepsilon = \pm 1$$

where $\varepsilon = 1$ if $u < u' \equiv 1/u \pmod{p}$ or $\varepsilon = -1$ if u' < u < p/2.

<u>Proof</u>: The product of the p-3 integers $q_p^{(u)}$ for $2 \le u \le p-2$ is d_p^2 . Since $q^{(u')} = q^{(u)}$ if $uu' \equiv 1 \pmod{p}$, we multiply together one factor from each of these pairs to obtain d_p .

For example

$$d_{5} = q_{5}^{(2)} = f_{5}^{(3)} = 11; \ d_{7} = q_{7}^{(2)} q_{7}^{(3)} = f_{7}^{(3)} f_{7}^{(2)} = 29 \cdot 8$$

$$d_{11} = q_{11}^{(2)} q_{11}^{(3)} q_{11}^{(-4)} q_{11}^{(5)} = f_{11}^{(3)} f_{11}^{(2)} f_{11}^{(5)} f_{11}^{(-4)} = 199 \cdot 67 \cdot \underline{23} \cdot 23$$

$$d_{13} = \prod_{u=2}^{6} q_{13}^{(u)} = 521 \cdot 131 \cdot 79 \cdot 27 \cdot 53$$

$$d_{17} = 3571 \cdot 613 \cdot 409 \cdot 137 \cdot \underline{307} \cdot \underline{137} \cdot 103.$$

<u>Theorem 2.7</u>: If p^b is a maximal prime power divisor of $q_n^{(u)}$ for prime n > u> 0, then $p^b \equiv 1 \pmod{n}$.

<u>Proof</u>: If $p | q_n^{(u)}$, there is a smallest field $GF(p^e)$ of characteristic p that contains a mark \overline{r} such that $\overline{r}^n \equiv 1 \equiv \overline{r} + \overline{r}^u \pmod{p}$. Raising to pth powers we see that \overline{r}^{p^k} is a solution for $k = 0, 1, \ldots, e - 1$. Since b factors $1 - \overline{r}^j - \overline{r}^u j$ vanish (mod p), e divides b. Since the order of $\overline{r} \neq 1$ is a factor of the prime n, it is n. Hence n divides the order $p^e - 1$ of the multiplicative group of $GF(p^e)$, which divides $p^b - 1$.

cative group of $GF(p^e)$, which divides $p^b - 1$. We find, for example, that $q_7^{(3)} = 2^3$, $q_{13}^{(4)} = 3^3$, and 2^5 divides $q_{31}^{(u)}$ for u = 12, -13, and 14. Factors of $q_p^{(u)}$ for primes 19 to 47 are listed in Table 1 above.

When, for composite *n*, we have $u^2 \equiv 1 \pmod{n}$ but $u \not\equiv \pm 1 \pmod{n}$, the factors $q_n^{(u)}$ and $q_n^{(-u)}$ of \overline{d}_n^2 are squares without reciprocal mates, so we must include only their square roots in \overline{d}_n . Also, \overline{d}_n may include factors $q^{(v:u)}$ where *u* and *v* are relatively prime divisors of *n*. For example, the

(n - 1)(n - 3)/2 = 84 complex factors of d_{15} include $4 \cdot 2/2 = 4$ from d_5 and $2 \cdot 0/2 = 0$ from d_3 , leaving 40 complex conjugate pairs in \overline{d}_{15} . The latter include four pairs each from $\overline{q}_{15}^{(u)}$ for u = 2, 3, 5, 6, 7, 9, 10, and 12, four from $\overline{q}_{15}^{(3:5)}$, but only two pairs each from $\overline{q}_{15}^{(u)} = 16$ and $\overline{q}_{15}^{(-4)} = 1$.

(2.18)
$$\overline{d}_{15} = 31 \cdot 31 \cdot 61 \cdot 1 \cdot 1 \cdot 61 \cdot 31 \cdot 2^4 \cdot 271 \cdot (2^4 \cdot 1)^{1/2}$$
.

The factor $q_{15}^{(4)}$ was found by (2.13) to be

(2.19)
$$q_{15}^{(4)} = f_{15}^{(3;5)} = (\sqrt{5}+1)^2 (-\sqrt{5}+1)^2 = 2^4.$$

To evaluate the principal factor $\overline{q}_{3p}^{\,(3\,:\,p)}$ for primes $p\geq$ 5, we set $p^{\,p}\,=\,\omega\,=\,e^{2\,\pi\,i/3}$

and obtain

(2.20)
$$\overline{q}_{3p}^{(3;p)} = \prod_{j \in R_{3p}} (1 - r^{pj} - r^{3j}) = |(1 - \omega^j)^p - 1|^2$$
$$= 3^p - (\omega^{-p} - \omega^p)(\omega - \omega^2)^p + 1 = 3 - \sigma 3^{(p+1)/2} + 1$$

where $\sigma = (-3/p) = \pm 1$ is the quadratic character of $-3 \pmod{p}$. In particular, $\overline{q}_{15}^{(3;5)} = 3^5 + 3^3 + 1 = 271$ (see Table 2), and

(2.21)
$$\overline{q}_{21}^{(3;7)} = 2269, \ \overline{q}_{33}^{(3:11)} = 176419, \ q_{39}^{(3;13)} = 157 \cdot 10141.$$

To compute $q_{27}^{(\pm 9)}$, we note that the ninth roots of ω are r^{1+3k} . Hence,

2)
$$q_{27}^{(\pm 9)} = \prod_{k=1}^{9} |1 - r^9 - r^{\pm 1 + 3k}|^2 = |(1 - \omega)^9 - \omega^{\pm 1}|^2$$
$$= 3^9 \pm 3^5 \pm 1 = 19684 \pm 243$$

(2.22

 $3^9 \pm 3^5 + 1 = 19684 \pm 243$.

3. THE FIBONACCI FACTORS OF d_n AND g_{2n}

Several extended principal factors of D_n are expressible as sums or ratios of Fibonacci numbers.

Theorem 3.1: For n odd, the factor
$$q_n^{(2)}$$
 of D_n is given by

(3.1)
$$q_n^{(2)} = F_{2n}/F_n = F_{n-1} + F_{n+1} = [\tau^n], \tau = (\sqrt{5} + 1)/2$$

where [] denotes the greatest integer function, and F_k denotes the $k{\rm th}$ Fibonacci number, defined by

(3.2)
$$F_0 = 0, F_1 = 1, F_{k+1} = F_k + F_{k-1}.$$

<u>Proof</u>: The roots of $z^2 - z - 1 = 0$ are $\tau = (\sqrt{5} + 1)/2$ and $\overline{\tau} = -1/\tau$. Factorization of (2.11) for u = 2 and n odd yields

(3.3)
$$q_n^{(2)} = -\prod_{j=1}^n (1 - r^j \tau) (1 - r^j \overline{\tau}) = -(1 - \tau^n) (1 - \overline{\tau}^n) = \tau^n + \overline{\tau}^n = [\tau^n].$$

It is known, and can be shown by induction, that

(3.4a)
$$F_{k} = (\tau^{k} - \overline{\tau}^{k}) / (\tau - \overline{\tau}), \quad F_{2k} / F_{k} = \tau^{k} + \overline{\tau}^{k}$$

(3.4b)
$$F_{k-1} + F_{k+1} = (\tau^{k-1} + \tau^{k+1} - \overline{\tau}^{k-1} - \overline{\tau}^{k+1})/(\tau - \overline{\tau}) = \tau^k + \overline{\tau}^k.$$

Hence (3.3) and (3.4) imply (3.1). The Fibonacci factors $[\tau^n] = q_n^{(2)}$ for the first 25 odd numbers n = 10t + d follow, with factors underlined which are omitted from $\overline{q}_n^{(2)}$.

(3.5)

10t

d	0	10	20	30	40
1	1	199	$2^2 \cdot 29 \cdot 211$	3010349	370248451
3	2 ²	521	139•461	$2^2 \cdot 199 \cdot 9901$	969323029
5	11	$2^2 \cdot 11 \cdot 31$	<u>11</u> • 101 • 151	<u>11 • 29</u> • 71 • 911	$2^2 \cdot 11 \cdot 19 \cdot 31 \cdot 181 \cdot 541$
7	29	3591	$2^2 \cdot 19 \cdot 5779$	54018521	6643838879
9	<u>2</u> °•19	9349	59•19489	$2^2 \cdot 521 \cdot 79 \cdot 859$	29 • 599786069

Note that each prime factor of $\overline{q}_n^{(2)}$ (not underlined) is congruent to 1 (mod n).

Since d_n divides g_{2n} for odd n, so does F_{2n}/F_n .

Theorem 3.2: The integer g_{2n} is divisible by F_n for even n and by F_{2n}/F_n for odd n.

Proof: The product of the $\lfloor n/2 \rfloor - 1$ factor pairs in (2.5) for which j + k= n and s = -1 is expressible as

(3.6)
$$\prod_{0 < 2j < n} |s^{j} - s^{-j} - 1|^{2} = \prod_{0 < 2j < n} (3 - s^{2j} - s^{-2j})$$
$$= \prod_{0 < 2j < n} (\tau + s^{2j}\overline{\tau}) (\tau + s^{-2j}\overline{\tau})$$
$$= (\tau^{n} - (-\overline{\tau})^{n}) / (\tau - (-1)^{n}\overline{\tau})$$

where $\tau + \overline{\tau} = -\tau\overline{\tau} = 1$. This is F_n for n even, and F_{2n}/F_n for n odd. For n = 2m, the factors of (3.6) with j odd have product

$$(\tau^m + (-\overline{\tau})^m)/(\tau + (-1)^m\overline{\tau})$$

which divides k_{2m} . This product is F_m for m odd and F_{2m}/F_m for m even. So $3|k_{\mu}, 7|k_{8}, 5|k_{10}, 13|k_{14}, 47|k_{16}, 123|k_{20}, 89|k_{22}.$ (3.7)

<u>Theorem 3.3</u>: If p is a prime > 5, then d_{5p} has the factor

(3.8)
$$\overline{q}_{5p}^{(5h)} = 1 + 5F_p(F_p - \sigma), \ \sigma = (p/5) = \pm 1, \ 5h \equiv 1 \pmod{p}$$

where F_p is the pth Fibonacci number and $\sigma = \pm 1$ is the quadratic character of $p \pmod{5}$.

Proof: Taking
$$r = e^{2\pi i/5p}$$
, $z = r^p$, $\tau^{-1} = z + z^{-1}$,

$$q_{5p}^{(5h)} = \prod_{j \in R_{5p}} (1 - r^{j} - r^{5hj}) = \prod_{j \in R_{5p}} (r^{-5hj} - r^{(1-5h)j} - 1)$$

$$= \prod_{j=1}^{4} (1 - (z^{2j} + 1)^{p}) = |1 - z^{p}\tau^{-p}|^{2} |1 - z^{2p}(-\tau)^{p}|^{2}$$

$$= (\tau^{p} + \tau^{-p} - z^{p} - z^{-p})(\tau^{p} + \tau^{-p} + z^{2p} + z^{-2p})$$

$$= 5F_{p}(F_{p} - \sigma) + 1$$
since $\tau^{p} + \tau^{-p} = \sqrt{5}F_{p}$, $(z^{1} + z^{-1})(z^{2} + z^{-2}) = -1$, and

since $\tau^{p} + \tau^{-p} = \sqrt{5}F_{p}$, $(z^{1} + z^{-1})(z^{2} + z^{-2}) = -1$, and $(z^{p} + z^{-p} - z^{2p} - z^{-2p})/\sqrt{5} = \sigma^{-1}$

is 1 if $p^2 \equiv 1 \pmod{5}$ or -1 if $p^2 \equiv -1 \pmod{5}$. The following such factors $q_{5p}^{(5h)}$ are prime except when p = 13

(3.10)
$$\frac{5p}{\overline{q}{(5h)}} \begin{vmatrix} 15 & 35 & 55 & 65 & 85 & 95 & 115 \\ \hline 31 & 911 & 39161 & 131 \cdot 2081 & 12360031 & 87382901 & 4106261531 \end{vmatrix}$$

Similarly, $181 | d_{45}$ and $21211 | d_{105}$.

4. POWER SUM FORMULAS FOR PRINCIPAL FACTORS OF \mathcal{D}_{n}

The extended principal factors of $q_n^{(-1)}d_n$ in (2.2) or the corresponding factors $q_{n,c}^{(v:u)}$ of h_n in (2.7) may be treated together by defining

(4.1)
$$(c + 2)q_{n,c}^{(v:u)} = \prod_{j=1}^{n} |c + r^{vj} + r^{uj}|, \ c = \pm 1, \ r = e^{2\pi i/n}$$

when u, v are integers with (u, v) = 1 and u > |v| > 0.

<u>Theorem 4.1</u>: If z_k are the *m* roots of the equation (4.2) $z_k + z_k + z_k + z_k - 0$ $z_k + 1$ $z_k + z_k$

(4.2)
$$z^{u} + z^{v} + c = 0, c = \pm 1, u > |v| > 0$$

where m = u for v > 0 or m = u - v for v < 0, then

(4.3)
$$\prod_{j=1}^{n} |c + r^{\nu j} + r^{\mu j}| = \prod_{k=1}^{m} |1 - z_{k}^{n}|.$$

Proof: Both sides of (4.3) equal the double product

(4.4)
$$\prod_{j=1}^{n} \prod_{k=1}^{m} |r^{j} - z_{k}|.$$

When m = 2, the two cases (u,v) = (1,-1) and (2,1) were involved in computing $q_n^{(-1)}$ in (2.3) with $z_k = -\omega$, $-\overline{\omega}$ and $q_n^{(2)}$ in (3.3) with $z_k = -\tau$, $-\overline{\tau}$. The factor $q_{n+}^{(2)}$ of h_n is 0 if 3|n or 1 otherwise, and may be omitted, since 3/n.

The unexpected identities

(4.5a)
$$(z^5 + z - 1) = (z + z^{-1} - 1)z(z^3 + z^2 - 1)$$

(4.5b)
$$(z^5 + z + 1) = (z^2 + z + 1)z(z^2 + z^{-1} - 1)$$

enable us to write

18

.

Feb.

(4.6)
$$q_n^{(5)} = q_n^{(-1)} q_n^{(2:3)}, q_{n+}^{(5)} = q_{n+}^{(2)} q_n^{(-2)} = q_n^{(-2)}$$

so the cubic cases m = 3 in (4.2) yield not only $q_{n+}^{(3)}$ and $q_n^{(3)}$ but also the two pairs of equal integral factors

$$q_n^{(5)}/q_n^{(-1)} = q_n^{(2:3)}$$
 and $q_{n+}^{(5)} = q_n^{(-2)}$.

Combining (4.1) and (4.3) for m = 3 yields

(4.7)
$$(2 + c) \cdot q_{n,c}^{(v:u)} = \left| 1 - s_{n,c}^{(v:u)} - \delta^{n} (1 - s_{-n,c}^{(v:u)}) \right|,$$
$$\delta = \Pi z.$$

where

(4.8)
$$s_{n,c}^{(v:u)} = \sum_{k=1}^{m} z_{k}^{n} \text{ for } z_{k}^{u} + z_{k}^{v} + c = 0.$$

The product $\delta = \Pi z_k$ is 1 for $q_n^{(3)}$ and $q_n^{(2:3)}$ and -1 for $q_{n+}^{(3)}$ or $q_n^{(-2)}$. We omit the subscript c when c = -1 and omit v when v = 1. Replacement of z_k by $-1/z_k$ converts the roots z_k of $z^2 + z^{-1} - 1 = 0$ to those of $z^3 + z^2 - 1 = 0$, and replacement of z_k by $-z_k$ converts $z^3 + z + 1 = 0$ to $z^3 + z - 1 = 0$. Hence

(4.9)
$$s_n^{(-2)} = (-1) s_{-n}^{(2:3)}, s_{n+}^{(3)} = (-1) s_n^{(3)}$$

Thus all six extended principal factors for m = 3 can be computed from the values of $s_n^{(2:3)}$ and $s_n^{(3)}$ for positive and negative n.

<u>Theorem 4.2</u>: The power sums $s_{n,c}^{(v:u)}$ satisfy the recurrence relations

(4.10)
$$s_{n+u,c}^{(v:u)} + s_{n+v,c}^{(v:u)} + cs_{n,c}^{(v:u)} = 0.$$

<u>Proof</u>: Multiply $z_k^u + z_k^v + c = 0$ by z_k^n and sum over k. Starting with the value m = 3 for n = 0, and the values $s_n^{(v:3)}$ for n =±1, we obtain values where v = 2 or 1 as follows:

п	1	2	3	4	5	6	7	8	9	10	11	12	13
$s_n^{(2:3)}$	-1	1	2	-3	4	-2	-1	5	-7	6	-1	-6	12
$s_{-n}^{(2:3)}$	0	2	3	2	5	5	7	10	12	17	22	29	39
$s_{n}^{(3)}$	0	-2	3	2	-5	1	7	-6	-6	13	0	-19	13
$s_{-n}^{(3)}$	1	1	4	5	6	10	15	21	31	46	67	98	144

Using (4.7) and (4.9) we can then compute the three extended principal factors $q_n^{(-2)}$, $q_n^{(2:3)}$, and $q_n^{(3)}$ of d_n and the factor $q_{n+}^{(3)}$ of h_n or $k_{n/2}$. We use (4.6) to compute the additional factors $q_n^{(5)}$ and $q_{n+}^{(5)}$. We compute $\overline{q}_{n+}^{(v:u)} = \overline{f}_{n+}^{(y:u)}$

by replacing $-c_{xj}$ by c_{xj} in Theorem 2.5. By (4.6) we write $\overline{q}_{n+}^{(5)} = \overline{q}_n^{(-2)}$. Then

$$\begin{aligned} h_{7} &= (\overline{q}_{7+}^{(3)})^{1/3} = 2, \ h_{11} = \overline{q}^{(-2)} = 23, \\ h_{13} &= (\overline{q}_{13+}^{(-3)})^{1/3} = 53 \cdot 3, \end{aligned} (continued)$$

(4.14)
$$h_{17} = \overline{q}_{17}^{(-2)} \overline{q}_{17+}^{(3)} = 103 \cdot 239$$
$$h_{19} = \overline{q}_{19}^{(-2)} \overline{q}_{19+}^{(3)} (\overline{q}_{19+}^{(3)})^{1/3} = 191 \cdot 47 \cdot 7$$
$$h_{23} = \overline{q}_{23}^{(-2)} \overline{q}_{23+}^{(3)} \overline{q}_{23+}^{(-3)} = 691 \cdot 47^2 \cdot 829$$

Similarly, since $(2m - 1)^2 \equiv 1 \pmod{4m}$, the factor of k_n in (2.9) is not $\overline{q}_{n+1}^{(n-1)}$ but its square root. Using $\overline{f}_{n+1}^{(y;x)}$ as before, the factors k_n of D_{2n} for 2n < 44 are

	k _n	k_4	k ₈	k _{l0}	k ₁₄	k ₁₆	k ₂₀
	$(\overline{q}_{2n+}^{(n-1)})^{1/2}$	3	7	5	13	47	41
	$\overline{q}_{2n}^{(-2)}$		17	5	2 ³	97	281
	$\overline{q}_{2n+}^{(3)}$		17	61	337	449	241
(4.15)	$\overline{q}_{2n+}^{(-3)}$			5	29	193	881
	$\overline{q}_{2n+}^{(-5)}$			41	197	97	41
	$\overline{q}_{2n+}^{(7)}$				113	353	281
	$q_{2n+}^{(-7)}$				29	257	41

The remaining factors of k_{20} are

 $(4.16) \qquad (\overline{q}_{40+}^{(9)}\overline{q}_{40+}^{(-9)}\overline{q}_{40+}^{(11)}\overline{q}_{40+}^{(-11)})^{1/2}\overline{q}_{40}^{(15)}\overline{q}_{40}^{(-15)} = 3^2 \cdot 31 \cdot 11 \cdot 41 \cdot 641 \cdot 41$

Note that the factors $\overline{q}_{2n+}^{(u)}$ in (4.15) are congruent to their squares (mod 2n). Factors of k_{22} are

(4.17)
$$k_{22} = 67 \cdot 89 \cdot 353 \cdot 397 \cdot 419 \cdot 617 \cdot 661 \cdot 1013 \cdot 2113$$
$$2333 \cdot 3257 \cdot 4357$$

The complete factorization of ${\it D}_{4\,4}$ is

(4.18)

B)
$$D_{44} = -3(23 \cdot 89 \cdot 683)^3 (5 \cdot 397 \cdot 2113)^3 (d_{11}h_{11}k_{22})^6.$$

5. FINITE BINOMIAL SERIES FOR THE POWER SERIES OF ROOTS

The two sums $s_{n,b,c}^{(v:u)}$ and $s_{-n,b,c}^{(v:u)}$ of the *n*th and -*n*th powers of the *u* roots z of the trinomial equation

(5.2)
$$z^{u} + bz^{v} + bc = 0, \ b^{2} = c^{2} = 1, \ u > v > 0$$

can both be expressed as sums of a total of at most 2 + |n|/v(u-v) integers that involve binomial coefficients.

Theorem 6.1: The sum of the nth powers of the roots z_k of (5.1) is

(5.2a)
$$s_{n,b,c}^{(v:u)} = \sum_{0 \le j} \frac{n}{i} {i \choose j} (-b)^i c^{i-j}$$
, where $ui - vj = n$

(5.2b)
$$= \sum_{0 \le j} u\binom{i}{j} - v\binom{i-1}{j-1} (-b)^{i} c^{i-j}, \text{ where } ui - vj = n.$$

Proof: If we set $w_k = -bc$, then Equation (5.1) for z_k becomes

(5.3)
$$w_{\nu}^{-u} = (-bc)^{-1} = z_{\nu}^{-u} (1 + z_{\nu}^{v}/c),$$

which can be solved for z_k in terms of w_k by applying formula (3.5c) of [4], replacing the letters λ , μ , ν , c, q, k in [4] by v' = u - v, v, -u, w_k , n, j, respectively. Thus

(5.4)
$$z_k^n = \sum_{j=0}^{\infty} \frac{n}{jv+n} \binom{(jv+n)/u}{j} w_k^{jv+n} e^{-j}.$$

The sum of the *u* values of w_k^{jv+n} is $u(-bc)^i$ if jv + n is an integral multiple ui of *u*, but is 0 otherwise. We obtain (5.2a) from (5.4) by setting jv + n = ui and summing over *j* subject to this condition and $j \ge 0$. The equivalent form (5.2b) obtained by setting n = ui - vj is clearly a sum of integers when $b^2 = c^2 = 1$. It also serves to assign the value $(-1)^j v$ to $\frac{n}{i} \binom{i}{j}$ when i = 0, j = -n/v > 0.

The conditions $j \ge 0$ and (u - v)i/n + v(i - j)/n = 1 in (5.2) imply $i/n \ge 0$, since $\binom{i}{j}$ vanishes for 0 < i < j. Hence, $0 \le j \le i \le n/(u - v)$ for n > 0, and $0 \le j \le j - i \le -n/v$ for n < 0. Since successive j's differ in (6.2a) by u, there are at most 1 + n/u(u - v) terms for n > 0 and at most 1 + |n|/uv for n < 0. Both sums can be computed with at most 2 + |n|/v(u - v) terms.

The four sums in (4.11) and corresponding sums when v = 1 or u - 1 and u > 3 are expressible in terms of the following 4 simple nonnegative sums:

(5.5a)
$$\sigma_0 = 1 + \sum_{0 < k \le n/u}^{\prime\prime} \frac{n}{n - vk} \binom{n - vk}{k}, \ \sigma_1 = \sum_{0 < k \le n/u}^{\prime\prime} \frac{n}{n - vk} \binom{n - vk}{k}$$

(5.5b)
$$\sigma_2 = \sum_{n/u \le k \le n/v} \frac{n}{k} \binom{k}{n - vk}, \qquad \sigma_3 = \sum_{n/u \le k \le n/v} \frac{n}{k} \binom{k}{n - vk}$$

where Σ'' and Σ' denote, respectively, the sums over even and odd k, and u = v + 1. Note that $\sigma_0 - 1$, σ_1 , σ_2 , and σ_3 are divisible by n when n is a prime.

Theorem 5.2: The 16 power sums $s_{m,b,c}^{(v:v+1)}$ and $s_{m,b,c}^{(v+1)}$ for $b^2 = c^2 = 1$, $m = \pm n$, are expressible for n > 0 in terms of the 4 binomial sums (5.5) as follows:

(5.6a)
$$s_{n,b,c}^{(v:v+1)} = (-b)^n (\sigma_0 + (-b)^v c \sigma_1)$$

(5.6b)
$$s_{-n,b,c}^{(v:v+1)} = b^n (\sigma_2 - b^v c \sigma_3)$$

(5.6c)
$$s_{n,b,c}^{(v+1)} = c^n (\sigma_2 - c^v b \sigma_3)$$

(5.6d)
$$s_{-n,b,c}^{(\nu+1)} = (-c)^n (\sigma_0 - c^{\nu} b \sigma_1)$$

<u>Proof</u>: For n > 0 and u = v + 1, we set i - j = k, i = n - kv in (5.2a) and obtain

(5.7)
$$s_{n,b,c}^{(v:v+1)} = \sum_{0 \le k \le n/u} \frac{n}{n-kv} \binom{n-kv}{k} (-b)^{n-kv} c^k.$$

Separating the sums for even and odd k, as in (5.5a), yields (5.6a). To obtain (5.6c), we replace v by 1 and u by v + 1, in (5.2a), and apply (5.5b). Then set i = k, i - j = n - vk, and separate terms for even and odd k. Replacing z_k by $1/z_k$ interchanges n and -n, b and c, v and u - v, taking $z^u + bz^b + bc = 0$ into $z^u + cz^{u-v} + bc = 0$, (5.6a) into (5.6d), and (5.6c) into (5.6b).

For n = 7, v = 2, we have

(5.8)

$$\sigma_{0}(17) = 1 + \frac{17}{13} \binom{13}{2} + \frac{17}{9} \binom{9}{4} = 341; \quad \sigma_{1}(17) = \frac{17}{15} \binom{15}{1} + \frac{17}{11} \binom{11}{3} = 323;$$

$$\sigma_{2}(17) = \frac{17}{6} \binom{6}{5} + \frac{17}{8} \binom{8}{1} = 34; \quad \sigma_{3}(17) = \frac{17}{7} \binom{7}{3} = 85.$$

To obtain the extended principal factors $q_n^{(-3)}$, $q_n^{(3:4)}$, $q_n^{(4)}$, and $q_{n+}^{(4)}$ related to quartic equations (4.2) or the 6 factors other than $q_n^{(5)}$ and $q_{n+}^{(5)}$ of (4.6) related to quintic equations, we apply Theorem 4.2 and express the sums $\sum (z_j z_k)^n$ for positive or negative *n* by $(s_n^2 - s_{2n})/2$. For the equation $z^4 + z^v + c = 0$ with v = 1 or 3 and $c = \pm 1$, we have $(z^4 + c)^2 = z^{2v}$, so g_{2n} satisfies the recurrence

(5.9)
$$s_{8+2n} + 2cs_{4+2n} + s_{2n} = s_{2n+2v}$$
.

We omit the details concerning the computation of these 10 extended factors --some of which may coincide with the two "quadratic" and six "cubic" factors described above. For higher degree than 5, the factors listed in Section 7 were computed by pocket calculator using (2.5).

6. THE MULTIPLICITY OF p = 2n + 1 IN D_n

The multiplicity of factors 23 in d_{11} , 59 in d_{29} , 83 in d_{41} , etc., as seen in Table 1, is clarified by the following theorem.

<u>Theorem 6.1</u>: If p = 2n + 1 is prime, then p^e divides D_n for some exponent $e \ge \lfloor (n - 1)/2 \rfloor$.

<u>Proof</u>: If \overline{s} is a primitive root (mod p), $1 < \overline{s} < 2n$, then $\overline{s}^{2n} \equiv 1 \pmod{p}$ and the even powers $\overline{s}^{2j} = \overline{p}^j$ are quadratic residues which are *n*th roots of unity (mod p). A principal factor $\overline{q}_n^{(v:u)}$ of d_n will vanish (mod p) if and only if the congruence $s^{2jv} + s^{2ju} \equiv 1 \pmod{p}$ holds for some j relatively prime to n. If (v, u) = 1, parametric solutions of this congruence are

(6.1)
$$s^{jv} \equiv 2/(h'+h), s^{ju} \equiv (h'-h)/(h'+h)$$
 where $hh' \equiv 1 \pmod{p}$.

There are 4[(n-1)/2] admissible values of h, excluding $h^2 = \pm 1$ or 0, of which the four distinct values $\pm h$, $\pm h'$ yield the same ordered pair (s^{2jv}, s^{2ju}) . Hence, there are [(n-1)/2] distinct ordered pairs of squares with sum 1 (mod p) and at least [(n-1)/2] factors p in D_n .

Note that the substitution of $(h \pm 1)/(h \mp 1)$ for h interchanges the squares s^{2jv} and s^{2ju} . If these squares are equal (mod p), each is 1/2, so 2 is a quadratic residue of p, p divides $2^n - 1$, $p \equiv \pm 1 \pmod{8}$, and [(n - 1)/2] is odd. For example, 7 divides $2^3 - 1$, 17 divides $2^8 - 1$, 23 divides $2^{11} - 1$, etc. In any case, [(n - 1)/4] factors p divide d_n . For example,

$$(6.2) 232 | d_{11}, 475 | d_{23}, 599 | d_{29}, 8310 | d_{41}$$

and the inequality $e \ge [(n - 1)/2]$ is exact except for p = 59 where

$$[(n - 1)/4] = 7 < e/2 = 9.$$

In this case we have

$$1 \equiv 25 + 25^2 \equiv 15 + 15^5 \equiv 19 + 19^8 \equiv 3 + 3^{-11} \equiv 16^{-1} + 16^{13}$$

$$\equiv 9 + 9^{-2} \equiv 17^{-1} + 17^2 \pmod{59}$$

but three factors $q_{29}^{(u)}$ are 59², for u = 5 and -13 (or 3/2) as well as -2.

7. SUMMARY

We list all the principal factors $q_p^{(u)}$ of d_p for prime p in Table 1, defining u' so that $uu' \equiv 1 \pmod{p}$, and taking all u from 2 to (p - 1)/2, except when 0 < u' < u. We then replace $q_p^{(u)}$ by $q_p^{(-u)}$ on the list, and indicate by underlining that this has been done. However, in computing, we take u = -2 instead of (p - 1)/2, and u/v = 3/2 instead of u = (3 - p)/2, $(2 \pm p)/3$ or 5. Similarly, we can use the "quartic" factors with u/v = -3or 4/3 instead of higher degree product formulas requiring more complicated calculations.

To find the prime factors of a large principal factor like

$$q_{\mu\pi}^{(13)} = 10504313,$$

we assume a factorization (1 + 94j)(1 + 94k) by Theorem 2.6, subtract 1, divide by 94, and get

$$(7.1) (1188) (94) + 76 = 94jk + j + k.$$

This implies j + k = 76 + 282m, and jk = 1188 - 3m for some m. The only prime for j < 7 is 283, which does not divide $q_{47}^{(13)}$. Hence $j \ge 7$, and

$$j + k < 1188/7 + 7 < 177$$
,

so m = 0. Thus, j = 22, k = 54, and $2069 \cdot 5077$ is the factorization. For odd composite n, both $q_n^{(u)}$ and $q_n^{(-u)}$ may be listed as in (2.18) if u and n have a common factor, so we list them together in (7.3). Factors $q_{3p}^{(3:p)}$ in (2.21) must also be included in d_{3p} and factors like (3.8) in d_{5p} . Factors of D_{4n+2} were given in (2.4), (2.7), and (4.14), whereas those of D_{4n} are obtained from (2.4), (2.9), and (4.15).

REFERENCES

- 1. P. Bachmann. Das Fermatproblem in seiner bisherigen Entwicklung. Berlin, 1919.
- L. Carlitz. "A Determinant Connected with Fermat's Last Theorem." Proc. 2. A.M.S. 10(1959):686-690.
- 3. L. Carlitz. "A Determinant Connected with Fermat's Last Theorem: Continued." Proc. A.M.S. 11 (1960):730-733.
- J.S. Frame. "Power Series for Inverse Functions." Amer. Math. Monthly 4. 64 (1957):236-240.
- 5. J.S. Frame. "Matrix Functions: A Powerful Tool." Pi Mu Epsilon Journal 6, No. 3 (1975):125-135.
- 6. E. Lehmer. "On a Resultant Connected with Fermat's Last Theorem." Bull. A.M.S. 41 (1935):864-867.
- 7. H.S. Vandiver. "Fermat's Last Theorem: Its History and the Nature of the Known Results Concerning It." Amer. Math. Monthly 53 (1946):555-578.
- 8. E. Wendt. "Arithmetische Studien über den 'letzen' Fermatschen Satz, welcher aussagt, dass die Gleichung $a^n = b^n + c^n$ für n > 2 in ganzen Zahlen nicht auflosbar ist." J. für reine und angew. Math. 113 (1894): 335-347.

(6.3)