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1 INTRODUCTION 

The general problem of multisecting a general sequence rapidly becomes 
very complicated. In this paper we multisect the convolutions of the Fibo-
nacci sequence and certain generalized Lucas sequences. 

When we 777-sect a sequences we write a generating function for every mth 
term of the sequence. To illustrate, we recall [1], [2], 

( i . i ) Z^ rrik + 2 

+ (-l)rFm_rx 

k = o 1 - Lmx + (-l)mx2 

which w - s e c t s t h e F i b o n a c c i sequence {Fn}, where 

1, Fn+1 ?n + * , „ - i ! 

and where Lm is the mth term of the Lucas sequence {Ln}, 

2, L1 - 1, Ln+1 E*n + &* 

For later comparison, it is well known that the Fibonacci and Lucas 
sequences enjoy the Binet forms 

(1.2) 

where a and 

F„ = a" - and 

are the roots of x 

1 + /5 

Ln =un + 

1 = 05 

1 - /5 
2 , 2 

Also, the generating functions for Fn and Ln are 

(1.3) EF«*n' 2 - x = £^n-l - X - X n = 0 1 - X - X*" n = 0 

The Fibonacci convolution array, written in rectangular form, is 

1 
1 
2 
3 
5 
8 

1 
2 
5 
10 
20 
38 

1 
3 
9 
22 
51 
111 

1 
4 
14 
40 
105 
256 

1 
5 
20 
65 
190 
511 

where each column is the convolution of the succeeding column with the Fi-
bonacci sequence. The convolution sequence {on} of two sequences {an} and 
{bn} is formed by 

n 

k'l 

51 
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Also, it is known that the generating functions of successive convolu-
tions of the Fibonacce sequence are given by (1 - x - x2)~ - 1, k = 0, 1, 2, 
..., where k = 0 gives the Fibonacci sequence itself. 

2. MULTISECTION OF THE FIBONACCI CONVOLUTION ARRAY 

We now proceed to multisect the Fibonacci convolution array. Recalling 
(1.1), we let 

Fr + (-1) F; x Fr + (-1) F*_TX 
a = — Q* = 

Clearly, 

Thus, 

Lkx + (-1) x2 1 - Lkxk + (-l)kx2k 

k-i 

r =0 

fc-1 

E G>r 

Yl<-Fr + (-lfFk_rx1<)xI- = Qk(x), 

W h e r e r = °  1 - Lkx* + (-Dkx2k 

Qk(x) 
1 

To multisect the general convolution sequence for the Fibonacci numbers, 
let us work on column s, where s = 1 is the Fibonacci sequence itself. Then 

Qfa) 
1 - L^x* + (-l)kx2k 

Now there are k separate /c-sectors. The coefficients of the numerator poly-
nomial of the jth generator are given by every kth coefficient of Qk(x), 
beginning with 1 _< j j< k, while the denominator is (l - Lkxk + (-l)kx2kY . 

It is now simple to see how to multisect the columns of Pascal1s tri-
angle (see [2]) by taking 

'(x) (l - xkY 
\l - x J • 

We can even multisect the negative powers, which in the Fibonacci case is 
just a finite polynomial (1 - x - x ) s from which we take every fcth coeffi-
cient. 

3. THE TRIBONACCI AND HIGHER CONVOLUTION ARRAYS 

Define the Tribonacci numbers {Tn} by 

(3.1) T0 = 0, Tx = T2 = 1, r„+3 = Tn+2 + Tn+1 + Tn. 

The Tribonacci convolution triangle, with the Tribonacci numbers appearing 
in the leftmost column, is 

1 
1 
2 
4 
7 

1 
2 
5 

12 
26 

1 
3 
9 

25 
63 

1 
4 

14 
44 

135 

1 
5 

20 
70 

. . . . . . 
(continued) 
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13 56 153 ... 
24 

Since 

(3.2) *- - = X>n*», 
I - X - X ~ X n = 0 

the generating functions for the Tribonacci convolution sequences are given 
successively by 

[x/(l - x - x2 - x3)]k+1
3 k = 0S 1, 23 ..., 

where k = 0 gives the Tribonacci sequence itself. 
Let 

Sk = ak + 3fe + Yfe 

where as 35 and y are the roots of x3 - x2 - x - 1 = 0. Then the multisect-
ing generating functions are obtained from 

1 — t>«X "T D_-,X — X 
(3.3) Qk(x) = : : , 

1 - X - X - X 

where the coefficients of Qk(x) used are 

^ l 9 T2> T3> ' e ' 9 Tk > (Tk + l " ST<) » • • • » (Tk+8 ~ SkTs^ > T-k-i> T-k 5 " ° ' s ^ - 2 -
The coefficients of the numerator polynomial of the Jth generator are given 
by every kth. coefficient of Qk (x) 9 beginning with 1 £ j _< k> while the de-
nominator is (1 - Skxk + S.kx^ - x^)s. 

From the auxiliary polynomial x - x - a? - 1 = 0, 

m = 2L EL_ + Yrp £ L_ + ^ = I L̂_ + oT 
1n rv - R ^ Y^n-l R _ v ^ ^ n - 1 v - n. P n " X 

or 
qn - 3n

 | 3n - Y? 
a - 3 3 - y ' y - a 

Y« 
Y 

y " 

-
-

-

or 
a 

a n 

(3.4) ^ . j ^ ___^|_ + 

Also 9 
n _nn n-1 _ gn-i n - 2 _ gn-2 

/OS) T = ^ + Y — - + Y - + • • • + Y n. 
U ' ^ i« a - 3 Y a - 3 Y a - 3 Y 

For the Quadranacci numbers {Qn} defined by 
(3.6) Q0 = o5 QX = e2 = i , Q3 = 29 en+4 = Qn+3 + cn + 2 + Qn+1 + Qn 
we get s i m i l a r r e s u l t s . I f we l e t a5 3* y9 and 6 be the r o o t s of x^ ~ x3 -
x2 - x - 1 = 0 , t hen 

(3.7) 0 | t , ° - _ | - + Y
a

 a_l - + . . . + y n + SQn_im 

In multisecting the Quadranacci convolution array, 

, (1 - a^)(l - 3k^)(l - y^fe)(l - Skxk) 
Uk{x) (1 - ouc)(l - Bar) (1 - yx) (1 - 6#) 

where £k(x) is the numerator polynomial from which the generating functions 
can be derived for multisecting the Quadranacci convolution sequences. 
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We can derive the following from (3.7): 

(3.8) 6Qn - 3Qn^ - Qn_2 - i _ | . + B_JL + I_|_ 

+ $n ~ an + 3n - $n
 + an - Y n 

6 - a 3 - 6 a - y " 

4. GENERALIZED FIBONACCI AND LUCAS NUMBERS 

Start with 
171 r 

fix) = fl ix - o^); 
i-l 

then if 

/(a?) = x" - x7""1 - ̂ m"2 - ... - 1, 

in particular, then 

J_ . f(S\x) n 1 
si fix) l l ix - aii)ix - a*2) . . . ix - aie) 

1 <_ i\ < i2 < i-3 < • • • < is <. m 
over all subscripts restrained above. 

If s - m9 then we get, after some effort, 

(4.1) - = Z ^ n > 
1 - x - x2 - - • - - xm »-o 

where F£ are the generalized Fibonacci numbers of the preceding section. 
If s = 772, we get the corresponding Lucas numbers 

sf„- c£ + a* + ••• + oC. 

But, for those 1 < s < m we get other generalized Fibonacci sequences with 
some interesting properties studies by Chow [3]. We note two quick theorems. 

TknoKzm 4.1: 

Let m 
fix) = J] (X ~ CX;), 777 >_ 2. 

Then {^n} = {m, 1, 3, 7, 15, 32, . . . } f or 777 terms. That is, 

^£0 = 777, ̂  = 21 - 1, y?2 = 22 - 1, ..., s£a = 2s - 1, ..., S * ^ 2W - 1. 

After 77? terms, the recurrence takes over. In fact, <£m is the first 
term yielded by the recurrence. Further, 

ThojQfiQm 4.2: The generating function for {^n} is 

(4 2) ^ " ̂  "" 1^ 2 " ̂  " 2^ 3 " '" ~ gW = V £̂ #n 
1 - # - X2 - ... - # m n«0 

Using the observation that 

Gmix) + x * £m + 10r) 



1980 MULTISECTION OF THE FIBONACCI CONVOLUTION ARRAY 55 

For (m + 1) terms 9 one can then get an inductive proof for the starting val-
ues theorem. Of course, one has a starting values theorem for the regular 
generalized Fibonacci numbers in generalized Pascal triangles, and these are 
1, 1, 2, 2Z, 2^9 . .., until we reach the full length of the recurrence. 
great interest, of course, are those of the form 

Of 

kx 

which starts off k, k - 1. 
rence takes over. 

For s = 2, 

1 - x - x 

2k - 1, .. , which now double u n t i l t h e r e c u r -

l_. f ( 2 ) (*) 
2! f(x) a - y 

~2 

ytt 

where the Tm are the triangular numbers. 
If one attempts to multisect the generalized Fibonacci numbers, one 

needs, of course, the generalized Lucas numbers in the recurrence relation. 
Recapping our results so far, we list each auxiliary polynomial: 

Fibonacci aK + 3* 

Lvx + (-1)* 

3 Tribonacci Sk = ak + + y' 

Skxz + S_kx 

m = 4 Quadranacci Sk = ak + (3k + Y k + 5 k 

X — D -, X i T^Uj, O 2^1^_ ) X D_T,X "T 1 

What is involved, then, are the elementary symmetric functions for the ori-
ginal polynomial but for the kth powers of the roots. 

5. GENERALIZED LUCAS NUMBERS AND SYMMETRIC FUNCTIONS 
OF kl\i POWERS 

If 

has roots a19 a2. 

(5 .1) 

xm + c1xm'1 + o0xm~2 + 

, am, and Sk 

i-iy 
kl 

s, l 

>k-l 

x 2 

0 

2 

+ Gm = 0 

+ a* then 

k - 1 

which stems from t h e system of e q u a t i o n s 
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S± + c, 

(5.2) S2 + o1S1 + 2o2 

S3 + C1S2 + ^2^1 + ^^3 

5^ + o1S3 + o2S2 + o3S1 + koh 

which are NewtonTs Identities as given by Conkwright [4], 
If you look at these equations, you have four unknowns c19 c2, c3, and 

ok if Sl9 S2, S3, and S^ are given. Thus, you can treat this as a nonhomo-
geneous system and hence solve for o19 o2, c3, or ch, but strangely enough, 
while working, this does not yield the clever expression first given. 

Consider instead 

a0S1 + c± = 0 

o0S2 + o1S1 + 2o2 = 0 

CQS3 + o1S2 + c2S1 - -3e3 

where o 1. Solve the system for o0 by Cramer*s rule: 

1° l 

p sx 

|-3<?3 S2 

\S, 1 

\s2 sx 

P 3 S2 

(-D3 
3 ~ 3! 

0 

2 

5 i 

0 

2 

S i 

* i 
5 2 

s3 

1 

S i 

s2 

S i 

s2 

s3 

0 

2 

S i 

-V.o 

1 

S i 

s2 

0 | 

2 

sj 

From (5.1) one can sequentially find o19 o2 , . . . , ok given S1, S2 , ..., 
5^, but this soon becomes untractable in practice. 

However, we can make a new representation of the generalized Lucas se-
quences by using the set of equations (5.2) to derive 

(5.3) ** = (-D" 

1*1 

2o0 

3c* 

koh - f c - l 

0 
1 

?k-2 

0 
0 
1 

0 
0 
0 

We rewrite (5.2) as 
(1)0! + S1 

(l)2o2 + S1o1 + S2 

(l)3e3 + Ŝ e,, + 52^x + S3 

(1)4^ + 5,1c3 + S2£2 + £ c + £ 
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Here9 again, we have a known variable (1) which we solve for using Cramer's 
rule for the nonhomogeneous set of equations, as 

0 

0 

0 

1 

1 = 
1*1 

2c2 

3c c 

4<J L 

1 lc1 

2o2 

3c 3 
4c 

(-1) 
2c2 

3c3 

Considering where these problems came from, if c1 = c2 = -1, ck = 0 for k > 
2, then Sk = Lk, the familiar Lucas numbers, which are then given by a tri-
diagonal continuant, 

Lk = (-1)* 

-1 
-2 

0 
0 

1 
-1 
-1 

0 

0 
1 

-1 
-1 

0 
0 
1 

-1 

0 
0 
0 
1 

0 
0 
0 
0 

0 
0 
0 
0 

0 0 0 0 "1 

while the generalized Lucas sequence related to the Tribonacci numbers is 
given by the quadradiagonal continuant, 

<-n* 

-1 
-2 
-3 

0 
0 

0 

1 
-1 
-1 
-1 

0 

. . . 
0 

0 
1 

-1 
-1 
-1 

0 

0 
0 
1 

-1 
-1 

-1 
0 
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1 . INTRODUCTION 

Let a , b be p o s i t i v e i n t e g e r s , (a9b) = 1. Consider t he sum 
a- l b-1 

(1.1) S = ] T xhr + as = ^ YLxbr + a8' 
br+a8<ab r=0 s = 0 

br + as < ab 
We w i l l show t h a t 

(1 .2) . 1 - X ab 

(1 - xa) (1 - xh) 1 - x 

As an a p p l i c a t i o n of ( 1 . 2 ) , l e t Bn(x) denote t he B e r n o u l l i po lynomia l 
of degree n de f ined by 

ez - 1 »-o 

Then we have 

X X (*>;£• Bn = 5n(o). 

(1 .3 ) X ] 5 n ( ^ + - + f ) = (B(aZ?) + a £ S ( x ) ) n - (aB + 2?B(aaO)n, 
, br + ae< ab 

where 

(uB(*) + ^ 5 ( z / ) ) n = J2(l)ukVn-kBk(x)Bn,k(y). 
£«ox ' 

We a l s o e v a l u a t e t h e sum 

(1.4) ^ (x + br + as)n 

br+as < ab 

in terms of Bernoulli polynomials; see (3.8) below. 
Let a, b9 G be positive integers such that (b,o) = (c9a) = (a,b) = 1. 

The sum (1.1) suggests the consideration of the sums 

o — y %bor + cas + abt 
bor + oas + abt< aba and 

g — y %ber+ cas + abt 
bcr + cas + abt< laba 

where 0 <. r < a, 0 <. s < b9 0 <_ t < o. We are unable to evaluate S1 and S2 
separately. However, we show that 


