Given triangle $A B C$ with $A B=\alpha, B C=\beta, C A=\gamma$, and circles with centres A, B, and C having radii α, b, and c, respectively.
Let $\ell=a+b+\alpha ; m=b+c+\beta ; n=\alpha+b-a ; p=\beta+b-c ;$ $q=a+b-\alpha ; t=b+c-\beta ; u=\alpha+a-b ; v=\beta+c-b ;$ $s=(\alpha+\beta+\gamma) / 2$.
Then, if x is the radius of a circle touching the three given ones:

$$
4(x+b) \sqrt{s(s-\gamma)}=\sqrt{n p(2 x+\ell)(2 x+m)} \pm \sqrt{u v(2 x+q)(2 x+t)}
$$

the positive sign being taken if the centre of the required circle falls outside angle $A B C$, and the negative sign if it falls inside angle $A B C$.

The formula applies to external contact. If a given circle of radius α, say, is to make internal contact with the required one, then $-\alpha$ must replace $+\alpha$ in the formula. If a given circle of radius α, say, becomes a point, put $a=0$.

When the three given circles touch each other externally,

$$
\alpha=a+b, \beta=b+c, \text { and } \gamma=a+c,
$$

and the above formula yields the solution mentioned by Trigg, viz.

$$
x=a b c /[2 \sqrt{a b c(a+b+c)} \pm(a b+b c+c a)]
$$

LETTER TO THE EDITOR

L. A. G. DRESEL

The University of Reading, Berks, UK
Dear Professor Hoggatt,
In a recent article with Claudia Smith [Fibonacci Quarterly 14 (1976): 343], you referred to the question whether a prime p and its square p^{2} can have the same rank of apparition in the Fibonacci sequence, and mentioned that Wall (1960) had tested primes up to 10,000 and not found any with this property.

I have recently extended this search and found that no prime up to one million $(1,000,000)$ has this property.

My computations in fact test the Lucas sequence for the property

$$
\begin{equation*}
L_{p} \equiv 1 \quad\left(\bmod p^{2}\right) \quad p=\text { prime } \tag{1}
\end{equation*}
$$

For $p>5$, this is easily shown to be a necessary and sufficient condition for p and p^{2} to have the same rank of apparition in the Fibonacci sequence, because of the identity

$$
\begin{equation*}
\left(L_{p}-1\right)\left(L_{p}+1\right)=5 F_{p-1} F_{p+1} \tag{2}
\end{equation*}
$$

So far, I have shown that the congruence (1) does not hold for any prime less than one million; I hope to extend the search further at a later date. You may wish to publish these results in The Fibonacci Quarterly.

Yours sincerely,
[Dr L. A. G. Dresel]

