A NOTE ON TILING RECTANGLES WITH DOMINOES

RONALD C. READ
University of Waterloo, Ontario, Canada
I NTRODUCTION
In how many ways can an $m \times n$ chessboard be covered by dominoes, each of which covers two adjacent squares? For general m and n this is the "dimer problem" which is known to be difficult (see [2] for details). However, when one of the dimensions, say m, is small, some results can be obtained, and will be given in this paper. The method used has some similarities with that used for the cell-growth problem in [3], although there are differences.

1. THE METHOD

We shall illustrate the general procedure by referring to the case $m=$ 3. Any covering of a $3 \times n$ rectangle with dominoes can be regarded as having been built up, domino by domino, in a standard way, starting at the lefthand edge of the rectangle. Each domino is placed so that it covers an uncovered square furthest to the left, and, if there is more than one such square, it covers the one nearest the "top" of the board. Thus if the construction of a covering has proceeded as far as the stage shown in Figure 1, the next domino must be placed so as to cover the position marked with an asterisk. There may be two ways of placing the new domino (as in Figure 1), but there will be only one way if the space below the asterisk is already covered.

In the course of constructing $3 \times n$ rectangles, the figures produced will have irregular right-hand ends-their "profiles." We start by listing the possible profiles and the ways in which one profile can be converted to another by adding an extra domino. This information is given in Figure 2, in which the profiles have been labelled A to I.

Let A_{r}, B_{r}, etc., denote the numbers of ways of obtaining figures ending in profiles A, B, etc., by assembling r dominoes. Then, by reference to Figure 2, we obtain the equations:

$$
\begin{align*}
& A_{r+1}=D_{r}+E_{r}+F_{r} \\
& B_{r+1}=A_{r} \\
& C_{r+1}=A_{r}+H_{r} \\
& D_{r+1}=B_{r} \\
& E_{r+1}=B_{r}+I_{r} \tag{1.1}\\
& F_{r+1}=C_{r} \\
& G_{r+1}=E_{r} \\
& H_{r+1}=F_{r} \\
& I_{r+1}=G_{r}
\end{align*}
$$

Since $A_{0}=1$ and all other values are 0 when $r=0$, we can use (1.1) to calculate these numbers, and in particular A_{r}, for $r=1,2$, etc. Equations (1.1) can also be transformed in an obvious way to an equation which expresses the vector $\left(A_{r+1}, B_{r+1}, \ldots, I_{r+1}\right)$ as a 9×9 matrix times the vector $\left(A_{p}, B_{r}, \ldots, I_{r}\right)$, but this is not very useful.

A better approach is to define generating functions

$$
A(t)=\sum_{r=0}^{\infty} A_{r} t^{r} \text {, etc. }
$$

Remembering that $A(t)$ will be the only one of these functions having a constant term, we obtain the relations

$$
\begin{align*}
& A(t)=1+t D(t)+t E(t)+t F(t) \tag{1.2}\\
& B(t)=t A(t) \\
& C(t)=t A(t)+t H(t) \\
& D(t)=t B(t) \\
& E(t)=t B(t)+t I(t) \\
& F(t)=t C(t) \\
& G(t)=t E(t) \\
& H(t)=t F(t) \\
& I(t)=t G(t)
\end{align*}
$$

Solving these equations for $A(t)$ we obtain

$$
\left(1-4 t^{3}+t^{6}\right) A(t)=1-t^{3},
$$

which can be more conveniently expressed as
(1.3) $\quad\left(1-4 x+x^{2}\right) A(x)=1-x$,
writing $A(x)=\sum_{r=0}^{\infty} a_{r} x^{r}$ where $a_{r}=A_{32^{\circ}}$. (Clearly $A_{k}=0$ if k is not a multiple of 3.)

From (1.3), we find that

$$
a_{r}=4 a_{r-1}-a_{r-2} .
$$

2. RESULTS

When $m=2$, there are two profiles $(A$ and B of Figure 2, with the bottom row omitted) and the corresponding equations are

$$
\begin{aligned}
& A(t)=1+t A(t)+t B(t) \\
& B(t)=t A(t)
\end{aligned}
$$

whence $A(t)=\left(1-t-t^{2}\right)^{-1}$. The numbers of tilings are therefore the Fibonacci numbers.

When $m=4$, the profiles are as shown in Figure 3 and by following the method of Section 1, we obtain the equations

$$
\begin{aligned}
& A(t)=1+t C(t)+t G(t)+t H(t)+t I(t) \\
& B(t)=t A(t) ; C(t)=t A(t)+t D(t)+t K(t) \\
& D(t)=t B(t) ; E(t)=t B(t)+t L(t) \\
& F(t)=t C(t) ; G(t)=t D(t) ; H(t)=t E(t) \\
& I(t)=t F(t) ; J(t)=t H(t) ; K(t)=t I(t) ; L(t)=t J(t)
\end{aligned}
$$

from which, on solving for $A(t)$, we obtain

$$
A(x)=\left(1-x^{2}\right) /\left(1-x-5 x^{2}-x^{3}+x^{4}\right)
$$

and the corresponding recursive formula

$$
\alpha_{r+1}=a_{r}+5 a_{r-1}+a_{r-2}-a_{r-3} .
$$

For $m>4$, the method becomes tedious by hand, but I found it quite easy to write a program (in APL) which would first generate the relations between the profiles (as in Figure 2) and then calculate the required numbers from the equations analogous to (1.1). In this way, results were
obtained for $m=5,6,7,8$, and 9. They are given in Table 1 below. Note that Kasteleyn [1] has given results for $m=n=2,4,6$, and 8 , with which the entries in the table agree.

FIGURE 3
TABLE 1

REFERENCES

1. P.W. Kasteleyn. "Graph Theory and Crystal Physics." In Graph Theory and Theoretical Physics, ed. by F. Harary, Ch. 2. New York: Academic Press, 1967.
2. J.K. Percus. Combinatorial Methods. Applied Mathematical Sciences, Col. 4. New York: Springer, 1971.
3. R.C. Read. "Contributions to the Cell-Growth Problem." Canad. J. Math. 14 (1962):1-20.
