5. J. Shallit. "A Triangle for the Be11 Numbers." The Fibonacci QuarterZy, to appear.

SOME LACUNARY RECURRENCE RELATIONS

A. G. SHANNON

The New South Wales Institute of Technology, Sydney, Australia
and
Oxford University, Linacre College, England

1. INTRODUCTION

Kirkpatrick [4] has discussed aspects of linear recurrence relations which skip terms in a Fibonacci context. Such recurrence relations are called "lacunary" because there are gaps in them where they skip terms. In the same issue of this journal, Berzsenyi [1] posed a problem, a solution of which is also a lacunary recurrence relation. These are two instances of a not infrequent occurrence.

We consider here some lacunary recurrence relations associated with sequences $\left\{\omega_{n}^{(r)}\right\}$, the elements of which satisfy the linear homogeneous recurrence relation of order r :

$$
\omega_{n}^{(r)}=\sum_{j=1}^{r}(-1)^{j+1} P_{r j} \omega_{n-j}^{(r)}, n>r,
$$

with suitable initial conditions, where the $P_{r j}$ are arbitrary integers. The sequence, $\left\{v_{n}^{(r)}\right\}$, with initial conditions given by

$$
v_{n}^{(r)}=\left\{\begin{array}{lr}
0 & n<0 \\
\sum_{j=1}^{r} \alpha_{r j}^{n} & 0 \leq n<r
\end{array}\right.
$$

is called the "primordial" sequence, because when $r=2$, it becomes the primordial sequence of Lucas [6]. The $\alpha_{r j}$ are the roots, assumed distinct, of the auxiliary equation

$$
x^{r}=\sum_{j=1}^{r}(-1)^{j+1} P_{r j} x^{r-j}
$$

We need an arithmetical function $\delta(m, s)$ defined by

$$
\delta(m, s)=\left\{\begin{array}{lll}
1 & \text { if } & m \mid s \\
0 & \text { if } & m / s
\end{array}\right.
$$

We also need $s(r, m, j)$, the symmetric functions of the $\alpha_{r i}^{m}, i=1,2, \ldots, r$, taken j at a time, as in Macmahon [5]:

$$
s(r, m, j)=\sum \alpha_{r i_{1}}^{m} \alpha_{r i_{2}}^{m} \ldots \alpha_{r i_{j}}^{m}
$$

in which the sum is over a distinct cycle of $\alpha_{r i}^{m}$ taken j at a time and where we set $s(r, m, 0)=1$.

For example,

$$
\begin{aligned}
& s(3, m, 1)=\alpha_{31}^{m}+\alpha_{32}^{m}+\alpha_{33}^{m}, \\
& s(3, m, 2)=\left(\alpha_{31} \alpha_{32}\right)^{m}+\left(\alpha_{32} \alpha_{33}\right)^{m}+\left(\alpha_{33} \alpha_{31}\right)^{m}, \\
& s(3, m, 3)=\left(\alpha_{31} \alpha_{32} \alpha_{33}\right)^{m} ; \\
& s(r, m, 1)=v_{m}^{(r)}, \\
& s(r, 1, j)=P_{r j} \\
& s(r, m, r)=P_{r p}^{m} .
\end{aligned}
$$

2. PRIMORDIAL SEQUENCE

Lemma 1: For $m \geq 0$,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} v_{(n+1) m^{(r)}} x^{n}=\left(\sum_{j=1}^{n+1} j s(x, m, j)(-x)^{j-1}\right) /\left(\sum_{j=0}^{r}(-1)^{j} s(r, m, j) x^{j}\right) . \\
& \text { Proof: } \sum_{n=0}^{\infty} v_{(n+1) m^{(x)}}^{(n}=\sum_{n=0}^{\infty} \sum_{i=1}^{r} \alpha_{r i}^{n m+m} x^{n} \\
& =\sum_{i=1}^{r} \alpha_{r i}^{m} \sum_{n=0}^{\infty}\left(\alpha_{r i}^{m n} x\right)^{n}=\sum_{i=1}^{r} \alpha_{r i}^{m}\left(1-\alpha_{r i}^{m} x\right)^{-1} \\
& =\sum_{i=1}^{r} \alpha_{r_{i}}^{m} \prod_{\substack{j=1 \\
j \neq 1}}^{r}\left(1-\alpha_{r j}^{m} x\right) / \prod_{j=1}^{r}\left(1-\alpha_{r j}^{m} x\right) \\
& =\frac{\sum_{i=1}^{r} \alpha_{r i}-\sum_{\substack{j=1 \\
j \neq 1}}^{r} \alpha_{r i}^{m} \alpha_{r j}^{m} x+\sum_{\substack{i, j, k=1 \\
i \neq j \neq k}}^{r} \alpha_{r i}^{m} \alpha_{r j}^{m} \alpha_{r k}^{m} x^{2}-\cdots}{\prod^{r}\left(1-\alpha_{r j}^{m} x\right)} \\
& =\frac{s(r, m, 1)-2 s(r, m, 2) x+3 s(r, m, 3) x^{2}-\cdots}{\sum_{j=0}^{r}(-1)^{j} s(r, m, j) x^{j}}
\end{aligned}
$$

because each $\alpha_{r i}, i=1,2, \ldots, j \leq r$ moves through j positions in a complete cycle.

Examples of the lemma when $r=2$ are obtained by comparing the coefficients of x^{n} in

$$
\sum_{n=0}^{\infty}(-1)^{n} s(r, m, n) x^{n} \sum_{i=0}^{\infty} v_{(i+1) m}^{(r)} x^{i}=\sum_{j=1}^{r+1} j s(r, m, j)(-x)^{j-1}
$$

x^{0} : on the left, $s(2, m, 0) v_{m}^{(2)}=v_{m}^{(2)}=$ right-hand side;
x^{1} : on the left, $-s(2, m, 1) v_{m}^{(2)}+s(2, m, 0) v_{2 m}^{(2)}=\alpha_{21}^{2 m}+\alpha_{22}^{2 m}-\left(\alpha_{21}^{m}+\alpha_{22}^{m}\right)^{2}$ $=-2\left(\alpha_{2 I} \alpha_{22}\right)^{m}$, $=-2 s(2, m, 2)$
= right-hand side.

We note that
and

$$
\begin{array}{llll}
{[(r+2) /(j+2)]=0} & \text { for } & j>r \geq 0 \\
r>[(r+2) /(j+2)] & \text { for } & 0 \leq j<r & \text { if } \quad r>2,
\end{array}
$$

where [•] represents the greatest integer function.
Theorem 1: The lacunary recurrence relation for $v_{n}^{(r)}$ for $r \geq 2$ is given by

$$
\begin{aligned}
& \sum_{n=0}^{\min (r, j)}(-1)^{n} s(r, m, n) v_{(j-n+1)}^{(r)} \\
= & (-1)^{j}(j+1) s(r, m, j+1) 1-\delta r,[(r+2) /(j+2)] \text { for positive } j .
\end{aligned}
$$

Proo f: We have from the lemma that

$$
\sum_{n=0}^{\infty}(-1)^{n} s(r, m, n) x^{n} \sum_{i=0} v_{(i+1) m}^{(r)} x^{i}=\sum_{j=1}^{r+1} j s(r, m, j)(-x)^{j-1}
$$

which can be rearranged to give

On equating coefficients of x^{j}, we get

$$
\sum_{n=0}^{j}(-1)^{n} s(r, m, n) v_{(j-n+1) m}^{(r)}= \begin{cases}0 & \text { if } j>r \\ (-1)^{j}(j+1) s(r, m, j+1) & \text { if } 0 \leq j \leq r\end{cases}
$$

But

$$
(1-\delta(r,[(r+2) /(j+2)]))= \begin{cases}0 & \text { for } j>r \\ 1 & \text { for } 0 \leq j<r, r>2\end{cases}
$$

and $0 \leq n<r$ in $s(r, m, n)$ from which we get the required result when $r>2$, as we exclude negative subscripts for $v_{n}^{(r)}$.

We next discuss the case for $r=2$.
When j is unity, we get

$$
s(r, m, 0) v_{2 m}^{(r)}-s(r, m, 1) v_{m}^{(r)}=2 s(r, m, 2)
$$

which can be reorganized as

$$
v_{2 m}^{(r)}-\left(v_{m}^{(r)}\right)^{2}+2 s(r, m, 2)=0 .
$$

When $r=2$, this becomes

$$
v_{2 m}^{(2)}-\left(v_{m}^{(2)}\right)^{2}+2 P_{22}^{m}=0
$$

which is in agreement with Equation (3.16) of Horadam [2].

$$
\text { Similarly, when } j=2 \text {, we find that for arbitrary } r \text {, }
$$

$$
s(r, m, 0) v_{3 m}^{(r)}-s(r, m, 1) v_{2 m}^{(r)}+s(r, m, 2) v_{m}^{(r)}=3 s(r, m, 4)
$$

or

$$
v_{3 m}^{(r)}-v_{m}^{(r)} v_{2 m}^{(r)}+s(r, m, 2) v_{m}^{(r)}=3 s(r, m, 4),
$$

which, when $r=2$, becomes

$$
v_{3 m}^{(2)}-v_{m}^{(2)} v_{2 m}^{(2)}+P_{22}^{m} v_{m}^{(2)}=0,
$$

and this also agrees with Equation (3.16) of Horadam if we put $n=2 m$ and $\omega_{m}^{(2)}=v_{m}^{(2)}$ there. Thus, the theorem also applies when $r=2$ if $j \geq 1$. If j were zero, and $r=2$, since $\delta(2,[4 / 2])=1$, the theorem would reduce to

$$
s(r, m, 0) v_{m}^{(2)}=0,
$$

which is false.
Corollary 1: $v_{k m}^{(r)}=\sum_{n=1}^{r}(-1)^{n+1} s(r, m, n) v_{(k-n) m}^{(r)}$.
Proo f: Put $j=k-1>r$ in the theorem and we get

$$
\sum_{n=0}^{r}(-1)^{n} s(r, m, n) v_{(k-n) m}^{(r)}=0
$$

which gives

$$
\sum_{n=1}^{r}(-1)^{n+1} s(r, m, n) v_{(k-n) m}^{(r)}=v_{k m}^{(r)}
$$

A particular case of the corollary occurs when $m=1$, namely

$$
\begin{aligned}
v_{k}^{(r)} & =\sum_{n=1}^{r}(-1)^{n+1} s(r, 1, n) v_{k-n}^{(r)} \\
& =\sum_{n=1}^{r}(-1)^{n+1} P_{r n} v_{k-n}^{(r)},
\end{aligned}
$$

as we would expect.
The recurrence relation in Theorem 1 has gaps; for instance, there are missing numbers between $v_{(j+1) m}^{(r)}$ and $v_{j m}^{(r)}$. When $j=m=2$, the lacunary recurrence relation becomes

$$
\begin{aligned}
& v_{6}^{(r)}-s(r, 2,1) v_{4}^{(r)}+s(r, 2,2) v_{2}^{(r)}-s(r, 2,3) v_{0}^{(r)} \\
= & 3 s(r, 2,3)(1-\delta(r,[(r+2) / 4])),
\end{aligned}
$$

and the numbers $v_{1}^{(r)}, v_{3}^{(r)}$, and $v_{5}^{(r)}$ are missing. For further discussion of lacunary recurrence relations, see Lehmer [5]. The lacunary recurrence relations can be used to develop formulas for $v_{n}^{(r)}$.

3. GENERALIZED SEQUENCE

In this section we consider the, more generalized sequence $\left\{\omega_{n}^{(r)}\right\}$.
$\begin{aligned} & \text { Theorem 2: } \\ & \text { Proo f: Put } \\ & w_{t n}^{(r)} \\ & \text { Pr } \\ & j=1 \\ & p \\ & j\end{aligned}(-1)^{j+1} s(r, t, j) w_{t(n-j)}^{(r)}, n>r$.

$$
w_{n}^{(r)}=\sum_{j=1}^{r} A_{j} \alpha_{r j}^{n}
$$

in which the A_{j} will be determined by the initial values of $\left\{w_{r j}^{(r)}\right\}$.

$$
\begin{aligned}
& \sum_{j=1}^{n}(-1)^{j+1} s(r, t, j) w_{t(n-j)}^{(r)}=\sum_{j=1}^{n}(-1)^{j+1} s(r, t, j) \sum_{i=1}^{n} A_{i} \alpha_{r i}^{t n-t} \\
& =\sum_{j=1}^{r} \alpha_{r j}^{t} \sum_{i=1}^{n} A_{i} \alpha_{r i}^{t n}-t-\sum_{j, k=1}^{r} \alpha_{r j}^{t} \alpha_{r k}^{t} \sum_{i=1}^{r} A_{i} \alpha_{r i}^{t n-2 t} \\
& +\cdots+(-1)^{r+1}\left(\alpha_{r 1}^{t} \alpha_{r 2}^{t} \ldots \alpha_{r p}^{t}\right) \sum_{i=1}^{n} A_{i} \alpha_{r i}^{t n-r t} \\
& =\sum_{j=1}^{n} A_{j} \alpha_{r j}^{t n}+\sum_{\substack{j, k=1 \\
j \neq k}}^{n} A_{j} \alpha_{r j}^{t n-t} \alpha_{r k}^{t}-\sum_{\substack{j, k=1 \\
j \neq k}}^{n} A_{j} \alpha_{r j}^{t n-t} \alpha_{r k}^{t} \\
& -\sum_{\substack{i, j, k=1 \\
i \neq j \neq k}}^{n} A_{i} \alpha_{r i}^{t n-2 t} \alpha_{r j}^{t} \alpha_{r k}^{t}+\cdots \\
& =\sum_{j=1}^{r} A_{j} \alpha_{r j}^{t n}=\omega_{t n}^{(r)},
\end{aligned}
$$

as required.
When $t=r=2$, we have $s(2,2,1)=3$ and $s(2,2,2)=1$, so that if $w_{n}^{(2)}$ $=F_{n}$, the nth Fibonacci

$$
F_{2 n}=3 F_{2 n-2}-F_{2 n-4},
$$

which result has been used by Rebman [8] and Hilton [2] in their combinatorial studies. There, too, the result

$$
n=\sum_{\gamma(n)}(-1)^{k-1} F_{2 a_{1}} F_{2 a_{2}} \cdots F_{2 a_{k}}
$$

was useful.
[$\gamma(n)$ indicates summation over all compositions $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of n, the number of components being variable.] The lacunary generalization of this result can be expressed as
Theorem 3: $W_{n}^{(r)}=\sum_{\gamma(n)}(-1)^{k-1} w_{t a_{1}}^{(r)} \ldots w_{t a_{k}}^{(r)}$, in which
where

$$
W_{n}^{(r)}=\sum_{j=1}^{n}(-1)^{j+1}\left\{s(r, t, j)+h_{j}\right\} W_{j-n}^{(r)}, n>p,
$$

$$
h_{j}=\sum_{m=1}^{j}(-1)^{m} s(r, t, j-m) w_{t m}^{(r)} .
$$

That the theorem generalizes the result can be seen if we let $r=2$, $t=1$, and $w_{n}^{(2)}=F_{n}$ again. Then, as before,

$$
F_{2 n}=3 F_{2 n-2}-F_{2 n-4}
$$

and

$$
\begin{aligned}
W_{n}^{(2)} & =\sum_{j=1}^{2}(-1)^{j+1}\left\{s(2,2, j)+h_{j}\right\}_{n-j}^{(2)} \\
& =\left\{s(2,2,2)+h_{1}\right\} W_{2-1}^{(2)}-\left\{s(2,2,2)+h_{2}\right\} W_{n-2}^{(2)}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{s(2,2,1)-s(2,20) F_{2}\right\} W_{n-1}^{(2)}-\left\{s(2,2,2)-s(2,2,1)+s(2,2,0) F_{4}\right\} W_{n-2}^{(2)} \\
& =(3-1)_{n-1}^{(2)}-(1-3+3) W_{n-2}^{(2)}=2 W_{n-1}^{(2)}-W_{n-2}^{(2)} ; \\
& \text { i.e., } W^{(2)}=n \text { as in the result. } \\
& \\
& \text { To prove Theorem 3, we need the following lemmas. }
\end{aligned}
$$

Lemma 3.1: $W(x)=w(x) /(1+w(x))$, where

Proo f:

$$
W(x)=\sum_{n=1}^{\infty} W_{n}^{(r)} x^{n} \text { and } \quad w(x)=\sum_{n=1}^{\infty} w_{t n}^{(r)} x^{n} .
$$

$$
W(x)=\sum_{n=1}^{\infty} W_{n}^{(r)} x^{n}
$$

$$
=\sum_{n=1}^{\infty}\left(\sum_{r(x)}(-1)^{k-1} w_{t \alpha_{1}}^{(r)} \ldots w_{t a_{k}}^{(r)}\right) x^{n}
$$

$$
=\sum_{k=1}^{\infty}-\left(-\sum_{n=1}^{\infty} w_{t n}^{(r)} x^{n}\right)^{k}
$$

$$
=\sum_{k=1}^{\infty}-(-w(x))^{k}
$$

$$
=w(x) /(1+w(x))
$$

Lemma 3.2: If $f(x)=\sum_{j=0}^{r}(-1)^{r-j} s(x, t, j) x^{j}$,
and

$$
h(x)=\sum_{j=1}^{n}(-1)^{r-j} h_{j} x^{j},
$$

where

$$
h(x)=f(x) w(x),
$$

then

$$
h_{j}=\sum_{m=1}^{j}(-1)^{m} s(r, t, j-m) w_{t m}^{(r)}
$$

Proof: If $h(x)=f(x) w(x)$,
then

$$
W(x)=f(x) w(x) /(f(x)+f(x) w(x))=h(x) /(f(x)+h(x)),
$$

so that

$$
h(x)=(f(x)+\hbar(x)) W(x) .
$$

Now

$$
\begin{aligned}
h(x)= & \sum_{m=1}^{\infty} w_{t n}^{(r)} x^{n} \sum_{j=0}^{r}(-1)^{r-j} s(r, t, j) x^{j} \\
= & \sum_{j=1}^{r}\left(\sum_{m=1}^{j}(-1)^{r-j+m} s(r, t ; j-m) w_{t m}^{(r)}\right) x^{j} \\
& +\sum_{j=1}^{\infty}\left(\sum_{m=0}^{r}(-1)^{m} s(r, t, r-m) w_{(j+m)}^{(r)}\right) x^{r+j}
\end{aligned}
$$

$$
=\sum_{j=1}^{r}(-1)^{r-j}\left(\sum_{m=1}^{j}(-1) s(r, t, j-m) w^{(r)}\right) x^{j}
$$

from Theorem 2. The result follows when the coefficients of x are equated. Thus,

$$
f(x)+h(x)=\sum_{j=1}^{r}(-1)^{r-j}\left\{s(r, t, j)+h_{j}\right\} x^{j}+1
$$

And since

$$
h(x)=(f(x)+\hbar(x)) w(x),
$$

Theorem 3 follows.
Shannon and Horadam [10] have looked at the development of second-order lacunary recurrence relations by using the process of multisection of series. The same approach could be used here. Riordan [9] treats the process in more detail.

REFERENCES

1. George Berzsenyi. "Problem B-364." The Fibonacci Quarterly 4 (1977): 375.
2. A.J. W. Hilton. "Spanning Trees and Fibonacci and Lucas Numbers." The Fibonacci Quarterly 12 (1974):259-264.
3. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3 (1965):161-176.
4. T. B. Kirkpatrick, Jr. "Fibonacci Sequences and Additive Triangles of Higher Order and Degree." The Fibonacci Quarterly 15 (1977):319-322.
5. D. H. Lehmer. "Lacunary Recurrence Formulas for the Numbers of Bernoulii and Euler." Ann. Math. 36 (1935):637-649.
6. Edouard Lucas. The Theory of Simply Periodic Numerical Functions. Edited by D. A. Lind, translated by S. Kravitz. San Jose, Calif.: The Fibonacci Association, 1969.
7. Percy A. Macmahon. Combinatory Analysis. Volume I. Cambridge: Cambridge University Press, 1915.
8. Kenneth R. Rebman. "The Sequence $\begin{array}{lllllll}15 & 16 & 45 & 121 & 320 & \ldots & \text { in Combina- }\end{array}$ torics." The Fibonacci Quarterly 13 (1975):51-55.
9. J. Riordan. Combinatorial Identities. New York: John Wiley \& Sons, Inc., 1968.
10. A. G. Shannon \& A. F. Horadam. "Special Recurrence Relations Associated with the Sequence $\left\{w_{n}(a, b ; p, q)\right\} . "$ The Fibonacci Quarterly 17 (1979): 294-299.
