ROOTS OF $(H-L) / 15$ RECURRENCE EQUATIONS
 IN GENERALIZED PASCAL TRIANGLES

CLAUDIA SMITH and VERNER E. HOGGATT, JR. San Jose State University, San Jose, CA 95192

1. INTRODUCTION

In this paper, we shall examine the roots of recurrence equations for ($H-L$)/15 sequences in Pascal's binomial, trinomial, quadrinomial, pentanomial, hexanomial, and heptanomial triangles.

Recall that the regular Lucas and Fibonacci sequences have the recurrence equation

$$
x^{2}-x-1=0
$$

with roots

$$
\alpha=(1+\sqrt{5}) / 2 \quad \text { and } \quad \beta=(1-\sqrt{5}) / 2 .
$$

As the roots of the $(H-L) / 15$ sequences are examined, α and β appear frequently.

Generalized Pascal triangles arise from the multinomial coefficients obtained by the expansion of

$$
\left(1+x+x^{2}+\cdots+x^{j-1}\right)^{n}, j \geq 2, n \geq 0
$$

where n denotes the row in each triangle. For $j=6$, the hexanomial coefficients give rise to the following triangle:

$$
\begin{aligned}
& \begin{array}{rrrrrrrrrrrrll}
1 & 1 & 1 & 1 & 1 & 1 & & & & & \\
1 & 2 & 3 & 4 & 5 & 6 & 5 & 4 & 3 & 2 & 1 & & \\
1 & 3 & 6 & 10 & 15 & 21 & 25 & 27 & 27 & 25 & 21 & 15 & 10 & 6 \\
3 & 1
\end{array} \\
& \text { etc. }
\end{aligned}
$$ are defined

the brackets denoting the greatest integer function. To clarify, we give a numerical example. Consider $S(3,6,15,0)$. This denotes the partition sums in the third row of the hexanomial triangle in which every fifteenth element is added, beginning with the zeroth column. The $S(3,6,15,0)=1+3=4$. (Conventionally, the column of l's at the far left is the zeroth column and the top row is the zeroth row.)

In the nth row of the j-nomial triangle the sum of the elements is j^{n}. This is expressed by

$$
\begin{aligned}
& S(n, j, k, 0)+S(n, j, k, 1)+\cdots+S(n, j, k, k-1)=j^{n} . \\
& S(n, j, k, 0)=\left(j^{n}+A_{n}\right) / k \\
& S(n, j, k, 1)=\left(j^{n}+B_{n}\right) / k \ldots \\
& S(n, j, k, k-1)=\left(j^{n}+z_{n}\right) / k . \\
&0, j, k, 0)=1, \\
& S(0, j, k, 1)=0 \ldots S(0, j, k, k-1)=0,
\end{aligned}
$$

Since $S(0, j, k, 0)=1$,
we can solve for $A_{0}, B_{0}, \ldots, Z_{0}$ to get $A_{0}=k-1, B_{0}=-1, \ldots, Z_{0}=-1$.
Now a departure table can be formed with $A_{0}, B_{0}, \ldots, Z_{0}$ as the zeroth row. The term departure refers to the quantities, $A_{n}, B_{n}, \ldots, Z_{n}$ that depart from the average value j^{n} / k. Pascal's rule of addition is the simple method for finding the successive rows in each departure table. The departure table for 15 partitions in the hexanomial triangle appears below. Each row has 15 elements which have been spread out by the computer into 3 rows.

TABLE 1
SUMS OF FIFTEEN PARTITIONS IN THE HEXANOMIAL TRIANGLE

14.	-1.	-1.	-1.	-1.
-1.	-1.	-1.	-1.	-1.
-1.	-1.	-1.	-1.	-1.
9.	9.	9.	9.	9.
9.	-6.	-6.	-6.	-6.
-6.	-6.	-6.	-6.	-6.
-21.	-6.	9.	24.	39.
54.	39.	24.	9.	-6.
-21.	-36.	-36.	-36.	-36.
-186.	-171.	-126.	-66.	9.
99.	159.	189.	189.	159.
99.	9.	-66.	-126.	-171.
-441.	-711.	-846.	-846.	-711.
-441.	-96.	264.	579.	804.
894.	804.	579.	264.	-96.
2004.	399.	-1251.	-2676.	-3651.
-3996.	-3651.	-2676.	-1251.	399.
2004.	3249.	3924.	3924.	3249.
18354.	16749.	12249.	5649.	-1926.
-9171.	-14826.	-17901.	-17901.	-14826.
-9171.	-1926.	5649.	12249.	16749.

The (H - L) /15 sequences are obtained from the difference of the maximum and minimum value sequences in a departure table, divided by 15 , where 15 is the number of partitions. A table of ($H-L$)/15 sequences follows.

TABLE 2

$j=$	2	3	4	5	6	7
	126	3085	25080	99565	231283	345775
252	8688	89861	414704	1057967	1654092	
462	24498	320661	1727341	4839483	7911790	
924	69136	1147444	7194890	22137392	37846314	
	1716	195209	4098172	29969004	101263708	
3431	551370		124831190	463213542		
				BINOMIAL TRIANGLE		

The pivotal element method was used to derive the ($H-L$)/15 recurrence equation in the binomial triangle,

$$
x^{7}-x^{6}-6 x^{5}+5 x^{4}+10 x^{3}-6 x^{2}-4 x+1=0 .
$$

We factor out $x-1$ to get

$$
x^{6}-6 x^{4}-x^{3}+9 x^{2}+3 x-1=0,
$$

which can be written as

$$
x^{2}\left(x^{2}-3\right)^{2}-x\left(x^{2}-3\right)-1=0 .
$$

Let $y=x\left(x^{2}-3\right)$, then the equation above becomes

$$
y^{2}-y-1=0
$$

with the roots α and β.
Solve $x\left(x^{2}-3\right)=\alpha$ and $x\left(x^{2}-3\right)=\beta$. β is the root of the first because

$$
\begin{aligned}
\beta\left(\beta^{2}-3\right) & =\left(\frac{1-\sqrt{5}}{2}\right)\left(\frac{6-2 \sqrt{5}}{2}-3\right)=\left(\frac{1-\sqrt{5}}{2}\right)\left(\frac{-6-2 \sqrt{5}}{4}\right) \\
& =\frac{-6+4 \sqrt{5}+10}{8}=\frac{4+4 \sqrt{5}}{8}=\frac{1+\sqrt{5}}{2}=\alpha .
\end{aligned}
$$

α is a root of the second because $\alpha\left(\alpha^{2}-3\right)=\beta$. We factor out $x-\beta$ from the first to get

$$
x^{2}+\beta x+\left(-3+\beta^{2}\right)=0,
$$

and factor out $x-\alpha$ from the second to get

$$
x^{2}+\alpha x+\left(-3+\alpha^{2}\right)=0 .
$$

These quadratic equations have roots

$$
\frac{-\beta \pm \sqrt{-3 \beta^{2}+12}}{2} \text { and } \frac{-\alpha \pm \sqrt{-3 \alpha^{2}+12}}{2}
$$

Thus the roots of the recurrence equation are

$$
1, \alpha, \beta, \frac{-\beta \pm \sqrt{-3 \beta^{2}+12}}{2}, \frac{-\alpha \pm \sqrt{-3 \alpha^{2}+12}}{2} .
$$

3. TRINOMIAL TRIANGLE

We derived the $(H-L) / 15$ recurrence equation

$$
x^{6}-6 x^{5}+9 x^{4}+5 x^{3}-15 x^{2}+5=0 .
$$

We rewrite as

$$
\left(x^{2}(x-3)\right)^{2}+5 x^{2}(x-3)+5=0
$$

Let $y=x^{2}(x-3)$, then the equation above becomes
with the roots $-\sqrt{5 \alpha}$ and $\sqrt{5 \beta}$.
Solve $x^{2}(x-3)=-\sqrt{5 \alpha}$ and $x^{2}(x-3)=\sqrt{5 \beta} . \quad \alpha$ is a root of the first, since

$$
\begin{aligned}
\alpha^{2}(\alpha-3) & =\left(\frac{6+2 \sqrt{5}}{4}\right)\left(\frac{1+\sqrt{5}}{2}-3\right)=\left(\frac{6+2 \sqrt{5}}{4}\right)\left(\frac{-5+\sqrt{5}}{2}\right) \\
& =\frac{-20-4 \sqrt{5}}{8}=-5\left(\frac{\sqrt{5}+1}{2}\right)=-\sqrt{5} \alpha .
\end{aligned}
$$

β is a root of the second, since $\beta^{2}(\beta-3)=\sqrt{5} \beta$. We factor out $x-\alpha$ from the first to get

$$
x^{2}+(-3+\alpha) x+\left(-3+\alpha^{2}\right)=0
$$

and factor out $x-\beta$ from the second to get

$$
x^{2}+(-3+\beta) x+\left(-3+\beta^{2}\right)=0
$$

Since $-3+\alpha=\sqrt{5} \beta$, and $-3+\beta=-\sqrt{5} \alpha$, the roots to these quadratic equations may be simplified to

$$
\frac{-\sqrt{5} \beta \pm \sqrt{3 \sqrt{5} \alpha}}{2} \text { and } \frac{\sqrt{5} \alpha \pm \sqrt{3 \sqrt{5}(-\beta)}}{2}
$$

Thus the roots of the recurrence equation again include α and β.
4. QUADRINOMIAL TRIANGLE

We derived the $(H-L) / 15$ recurrence equation

$$
x^{6}-x^{5}-10 x^{4}+10 x^{2}+x-1=0
$$

We factor out $(x-1)(x+1)$ to get

$$
x^{4}-x^{3}-9 x^{2}-x+1=0
$$

Divide through by x^{2}, then let $y=x+1 / x$. We obtain

$$
\left(2+x^{2}+1 / x^{2}\right)-(x+1 / x)-11=0
$$

Then, after substituting y, the equation above becomes

$$
y^{2}-y-11=0
$$

with the roots

$$
\frac{1 \pm 3 \sqrt{5}}{2}
$$

Now we solve

$$
x+1 / x=\frac{1 \pm 3 \sqrt{5}}{2} .
$$

Multiply this equation by x to obtain

$$
x^{2}-\left(\frac{1 \pm 3 \sqrt{5}}{2}\right) x+1=0
$$

The roots of this pair of quadratic equations are found to be

$$
\frac{1 \pm 3 \sqrt{5}}{2} \pm \sqrt{\frac{1+45 \pm 6 \sqrt{5}}{4}-4}=\frac{1 \pm 3 \sqrt{5} \pm 2 \sqrt{3 \sqrt{5} \alpha}}{4} .
$$

Now $\frac{1+3 \sqrt{5}}{2}=2 \alpha-\beta$ and $\frac{1-3 \sqrt{5}}{2}=2 \beta-\alpha$, thus we may simplify. The roots of the recurrence equation are, therefore,

$$
+1,-1, \frac{2 \beta-\alpha \pm \sqrt{3 \sqrt{5}(-\beta)}}{2}, \frac{2 \alpha-\beta \pm \sqrt{3 \sqrt{5} \alpha}}{2} .
$$

5. PENTANOMIAL TRIANGLE

We derived the $(H-L) / 15$ recurrence equation

$$
x^{5}-5 x^{4}+15 x^{2}-9=0
$$

We factor out $x+1$ to get

$$
x^{4}-6 x^{3}+6 x^{2}+9 x-9=0
$$

Let $y=x-3 / 2$. Then $y^{2}=x-3 x+9 / 4$ and

$$
y^{4}=x^{4}-6 x^{3}+(27 / 2) x^{2}-(27 / 2) x+81 / 16
$$

so the recurrence equation may be written

$$
y^{4}-(15 / 2) y^{2}+(45 / 16)=0
$$

Letting $z=y^{2}$ produces a quadratic equation in z with roots

$$
\frac{\frac{15}{2} \pm \sqrt{\frac{225}{4}-4\left(\frac{45}{16}\right)}}{2}=\frac{15 \pm 6 \sqrt{5}}{4} .
$$

Thus,

$$
y=\frac{ \pm \sqrt{15 \pm 6 \sqrt{5}}}{2} \text { and } x=\frac{3 \pm \sqrt{15 \pm 6 \sqrt{5}}}{2}
$$

We rewrite these last four roots as follows:

$$
\frac{3 \pm \sqrt{15+6 \sqrt{5}}}{2}=\frac{3 \pm \sqrt{3 \sqrt{5} \alpha^{3}}}{2} \text { and } \frac{3 \pm \sqrt{15-6 \sqrt{5}}}{2}=\frac{3 \pm \sqrt{3 \sqrt{5}\left(-\beta^{3}\right)}}{2} .
$$

Thus, the five roots to the recurrence equation are the four just above and -1.

6. HEXANOMIAL TRIANGLE

We derived the ($H-L$) /15 recurrence equation

$$
x^{5}-4 x^{4}-5 x^{3}+10 x^{2}+5 x-5=0
$$

We factor out $x+1$ to get

$$
x^{4}-5 x^{3}+10 x-5=0
$$

To use Ferrari's solution of the quartic equation, we must determine a, b, and k such that

$$
x^{4}-5 x^{3}+10 x-5+(a x+b)^{2}=\left(x^{2}-(5 / 2) x+k\right)^{2}
$$

The determination of α, b, and k is accomplished by equating the coefficients of like powers of x in the equations above. This leads to the relations

$$
a^{2}=2 k+25 / 4 ; 2 a b+10=-5 k ; b^{2}-5=k^{2}
$$

which gives rise to the resolvent cubic equation in k :

$$
8 k^{3}-60 k+25=0
$$

A root of this cubic equation is $k=5 / 2$. We substitute this value of k in the relations above to solve for α and b. We find

$$
a=\frac{3 \sqrt{5}}{2} \quad \text { and } \quad b=\frac{-3 \sqrt{5}}{2}
$$

Now we solve an equation in which both members are perfect squares:

$$
\left(x^{2}-(5 / 2) x+(5 / 2)\right)^{2}=(a x+b)^{2}
$$

Therefore,

$$
x^{2}-(5 / 2) x+(5 / 2)=a x+b
$$

and

$$
x^{2}-(5 / 2) x+(5 / 2)=-a x-b
$$

The four roots of the quartic equation can be found by solving these two quadratic equations. We substitute the values of α and b in these quadratic equations to obtain

$$
x^{2}-\left(\frac{5+3 \sqrt{5}}{2}\right) x+\frac{5+3 \sqrt{5}}{2}=0
$$

and

$$
x^{2}-\left(\frac{5-3 \sqrt{5}}{2}\right) x+\frac{5-3 \sqrt{5}}{2}=0
$$

Hence

$$
x=\frac{\frac{5 \pm 3 \sqrt{5}}{2} \pm \sqrt{\frac{70 \pm 30 \sqrt{5}}{4}-4\left(\frac{5 \pm 3 \sqrt{5}}{2}\right)}}{2}=\frac{5 \pm 3 \sqrt{5} \pm \sqrt{30 \pm 6 \sqrt{5}}}{4}
$$

Thus, $\quad x=\frac{\sqrt{5} \alpha^{2} \pm \sqrt{3} \sqrt{\sqrt{5}} \sqrt{\alpha}}{2}$ or $x=\frac{-\sqrt{5} \beta^{2} \pm \sqrt{3} \sqrt{\sqrt{5}} \sqrt{-\beta}}{2}$.
These four roots together with $x=-1$ comprise the five roots to the recurrence equation.

7. HEPTANOMIAL TRIANGLE

We derived the $(H-L) / 15$ recurrence equation

$$
x^{7}-4 x^{6}-6 x^{5}+10 x^{4}+5 x^{3}-6 x^{2}-x+1=0
$$

Let $y=1 / x$ to obtain

$$
1-4 y-6 y^{2}+10 y^{3}+5 y^{4}-6 y^{5}-y^{6}+y^{7}=0
$$

This equation in y is precisely the recurrence equation of the ($H-L$)/15 sequence in the binomial triangle. Hence, the roots we are seeking are the reciprocals of the roots that were derived in the binomial triangle. These reciprocal roots are

$$
1,1 / \alpha, 1 / \beta, \frac{\beta^{3} \pm \sqrt{3 \sqrt{5}\left(-\beta^{3}\right)}}{2}, \frac{\alpha^{3} \pm \sqrt{3 \sqrt{5} \alpha^{3}}}{2}
$$

8. CONCLUSION

How surprising to see α and β appear with such frequency in the roots to all the cases with 15 partitions!

Another unexpected result was the reciprocal relationship that occurred between the recurrence equations of the binomial and heptanomial triangles. More study into the successive j-nomial triangles could certainly surface more interesting results.

Theorem A: $\cos 12^{\circ}=\frac{-\beta+\sqrt{3} \sqrt{\sqrt{5}} \sqrt{\alpha}}{4}$.
Proof: Consider the Golden Triangle:

$x=2 \sin 18^{\circ}$
Therefore $\frac{1-x}{x}=\frac{x}{1}$, which implies $x=\frac{\sqrt{5}-1}{2}=-\beta$.

$$
\begin{aligned}
\cos 18^{\circ} & =1-\left(\frac{3-\sqrt{5}}{8}\right)=\frac{\sqrt{5}}{4}\left(\frac{1+\sqrt{5}}{2}\right) \\
\cos 18^{\circ} & =\frac{\sqrt{\sqrt{5}}}{2} \sqrt{\alpha} \\
\sin 18^{\circ} & =\frac{\sqrt{5}-1}{4} \\
\cos 12^{\circ} & =\cos 18^{\circ} \cos 30^{\circ}+\sin 18^{\circ} \sin 30^{\circ} \\
& =\frac{\sqrt{\sqrt{5}}}{2} \sqrt{\alpha}\left(\frac{\sqrt{3}}{2}\right)+\frac{1}{2}\left(-\frac{\beta}{2}\right)=\frac{-\beta+\sqrt{3} \sqrt{\sqrt{5}} \sqrt{\alpha}}{4} .
\end{aligned}
$$

We note this occurs often in the roots.

REFERENCES

1. John L. Brown, Jr., \& V. E. Hoggatt, Jr. "A Primer for the Fibonacci Numbers, Part XVI: The Central Column Sequence." The Fibonacci Quarterly 16, No. 1 (1978):41.
2. Michel Y. Rondeau. "The Generating Functions for the Vertical Columns of ($N+1$)-Nomial Triangles." Master's thesis, San Jose State University, San Jose, California, December, 1973.
3. Claudia R. Smith. "Sums of Partition Sets in the Rows of Generalized Pascal's Triangles." Master's thesis, San Jose State University, San Jose, California, May 1978.
4. Claudia Smith \& Verner E. Hoggatt, Jr. "A Study of the Maximal Values in Pascal's Quadrinomial Triangle." The Fibonacci Quarterly 17, No. 3 (1979):264-268.
5. Claudia Smith \& Verner E. Hoggatt, Jr. "Generating Functions of Central Values in Generalized Pascal Triangles." The Fibonacci Quarterly 17, No. 1 (1979):58.
