POWERS OF THE PERIOD FUNCTION FOR THE SEQUENCE OF FIBONACCI NUMBERS

T. E. STANLEY

The City University, London E.C.1, U.K.

If *m* is an integer greater than or equal to 2, we write $\phi(m)$ for the length of the period of the sequence of Fibonacci numbers reduced to least nonnegative residues modulo *m*. The function ϕ has been studied quite extensively (see, for example, [1], [2], and [3]). It is easy to discover that for small values of *m* there exists a positive integer *k* such that

 $\phi^k(m) = \phi^{k+1}(m),$

i.e., that the sequence

$\phi(m)$, $\phi(\phi(m))$, $\phi(\phi(\phi(m)))$, ...

eventually becomes stationary. The purpose of this note is to prove this fact in general.

We start by observing that it is sufficient to consider *m* to be of the form $2^a 3^b 5^c$ for nonnegative integers *a*, *b*, and *c*. For, if $\psi(m)$ denotes the rank of apparition of *m* in the Fibonacci sequence modulo *m*, then by Lemma 12 of [1], if $p \neq 5$ is an odd prime we have $\psi(p) \mid (p \pm 1)$, while $\psi(5) = 5$. Thus, for an odd prime $q \neq 5$ with $q \geq p$ such that $q \mid \psi(p)$, we have that $q \mid (p \pm 1)$, which is impossible. Consequently, the primes occurring in the prime decomposition of $\psi(p)$ are all less than *p* or, as we shall say, $\psi(p)$ "involves" only primes less than *p*. Now, by a Theorem of Vinson [2], we know that

 $\phi(p) = 2^{r}\psi(p)$ where r = 0, 1, or 2,

so that $\phi(p)$ also involves only primes less than p.

Suppose $\phi(m) = dp^{\beta}$, where p is a prime greater than 5, and d involves only primes less than p and $\beta \neq 0$. Then using Lemma 14 of [1] and Theorem 5 of [3] we have that

$$\phi^{2}(m) = \begin{cases} [\phi(d), p^{\beta-1}\phi(p)] \text{ if } \phi(p^{2}) \neq \phi(p) \\ [\phi(d), p^{\beta-2}\phi(p)] \text{ if } \phi(p^{2}) = \phi(p) \text{ and } \beta \neq 1 \end{cases}$$

where square brackets with integers inside denote the lowest common multiple of those integers. Now, $\phi(d)$ and $\phi(p)$ involve only primes less than p, so that $\phi^2(m) = d_1 p^{\gamma}$, say, where $0 \leq \gamma < \beta$ and d_1 involves only primes less than p. Carrying on in this way, we eventually find an integer s such that $\phi^s(m)$ does not involve p and so, continuing, we may find an integer t such that $\phi^t(m)$ involves only 2, 3, and 5. Thus

 $\phi^{t}(m) = 2^{a} 3^{b} 4^{c}$ for some *a*, *b*, *c* > 0.

This justifies the assertion that we need consider only integers of the stated form.

We now define a sequence $\{\alpha_n\}$ by $\alpha_1 = \alpha - 1$, where $\alpha > 1$, and $\alpha_{n+1} = \max(\alpha_n - 1, 3)$ if $n \ge 1$. Then it is easy to see that $\{\alpha_n\}$ eventually takes the constant value 3: in fact, $\alpha_{a-3} = 3$ if $\alpha \ge 5$ and $\alpha_2 = 3$ if $\alpha < 5$. Now $\phi^n(2^\alpha) = 2^{\alpha_n} \cdot 3$, so that if $\alpha \ge 5$ we have $\phi^{a-3}(2^\alpha) = 2^3 \cdot 3$, and if $\alpha < 5$ we have $\phi^2(2^\alpha) = 2^3 \cdot 3$. Thus, we see that there exists an integer $u \ge 2$ such that $\phi^u(2^\alpha) = 2^3 \cdot 3$ if $\alpha > 1$. Similarly, if we define the sequence $\{\beta_n\}$ by

Feb. 1980

SOME REMARKS ON THE PERIODICITY OF THE SEQUENCE OF FIBONACCI NUMBERS-II

 $\begin{array}{l} \beta_1 = b - 1, \text{ where } b > 1, \text{ and } \beta_{n+1} = \max \left(\beta_n - 1, 1\right) \text{ if } n \ge 1, \text{ we have that } \\ \beta_{b-1} = 1 \text{ if } b \ge 3, \beta_2 = 1 \text{ if } b < 3, \text{ and that } \phi^n(3^b) = 2^3 \cdot 3^{\beta_n}. \\ \text{Thus, there exists an integer } v \ge 2 \text{ such that } \phi^v(3^b) = 2^3 \cdot 3 \text{ if } b > 1. \\ \text{Now we note that } \phi^4(2) = \phi^3(3) = 2^3 \cdot 3 \text{ and that } \phi^3(5^c) = 2^3 \cdot 3 \cdot 5^c \text{ for any } c \ge 1 \text{ and that } \phi(2^3 \cdot 3 \cdot 5^c) = 2^3 \cdot 3 \cdot 5^c \text{ holds even for } c = 0. \\ \text{Again using the set of the term } c = b \ge 1 \text{ that } t \text{ and }$

ing Lemma 14 of [1] we have for a, b > 1 that

$$\begin{split} \phi^{u+v}(2^{a}3^{b}) &= [\phi^{u+v}(2^{a}), \ \phi^{u+v}(3^{b})] \\ &= [\phi^{v}(2^{3} \cdot 3), \ \phi^{u}(2^{3} \cdot 3)] \\ &= 2^{3} \cdot 3, \end{split}$$

so that

$$\phi^{u+v}(2^a 3^b 5^c) = [2^3 \cdot 3, 2^3 \cdot 3 \cdot 5^c] = 2^3 \cdot 3 \cdot 5^c$$

since u + v > 3. Consequently

$$\phi^{u+v+1}(2^a 3^b 5^c) = \phi^{u+v}(2^a 3^b 5^c).$$

The remaining cases are when $\alpha \leq 1$ or $b \leq 1$, and it is easy to check that $\phi^{v+3}(2^a 3^b 5^c) = \phi^{v+2}(2^a 3^b 5^c)$ if $\alpha \leq 1$ and $\phi^{u+3}(2^a 3^b 5^c) = \phi^{u+2}(2^a 3^b 5^c)$ if b < 1.

REFERENCES

- 1. J. H. Halton. "On the Divisibility Properties of Fibonacci Numbers." The Fibonacci Quarterly 4, No. 3 (1966):217-240.
- 2. J. Vinson. "The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence." The Fibonacci Quarterly 1, No. 1 (1963):37-45.
- 3. D. D. Wall. "Fibonacci Series Modulo m." American Math. Monthly 67 (1960): 525-532.

SOME REMARKS ON THE PERIODICITY OF THE SEQUENCE OF FIBONACCI NUMBERS-II

T. E. STANLEY

The City University, London E.C.1, U.K.

The Fibonacci sequence $\{F_n\}$ is defined by

$$F_0 = 0$$
, $F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$ $(n \ge 1)$.

If t is an integer greater than 2 and $\phi(t)$ is the length of the period of the sequence reduced to least nonnegative residues modulo t, it was shown in [2] that $\phi(F_{m-1} + F_{m+1}) = 4m$ if m is even and $\phi(F_{m-1} + F_{m+1}) = 2m$ if m is odd. It follows for $\overline{m} > 4$ that

$$\phi(F_{m-1} + F_{m+1}) = \frac{1}{2} (\phi(F_{m-1}) + \phi(F_{m+1})).$$

I conjectured in the same paper that if m - k > 3 then

$$\Phi(F_{m-k} + F_{m+k}) = \frac{\kappa}{2} \left(\Phi(F_{m-k}) + \Phi(F_{m+k}) \right).$$

The object of this note is to show that this conjecture is false and to give the correct answer in some special cases.