POWERS OF THE PERIOD FUNCTION FOR THE SEQUENCE OF FIBONACCI NUMBERS

T. E. STANLEY

The City University, London E.C.1, U.K.
If m is an integer greater than or equal to 2 , we write $\phi(m)$ for the length of the period of the sequence of Fibonacci numbers reduced to least nonnegative residues modulo m. The function ϕ has been studied quite extensively (see, for example, [1], [2], and [3]). It is easy to discover that for small values of m there exists a positive integer k such that

$$
\phi^{k}(m)=\phi^{k+1}(m),
$$

i.e., that the sequence

$$
\phi(m), \phi(\phi(m)), \phi(\phi(\phi(m))), \ldots
$$

eventually becomes stationary. The purpose of this note is to prove this fact in general.

We start by observing that it is sufficient to consider m to be of the form $2^{a} 3^{b} 5^{c}$ for nonnegative integers a, b, and c. For, if $\psi(m)$ denotes the rank of apparition of m in the Fibonacci sequence modulo m, then by Lemma 12 of [1], if $p \neq 5$ is an odd prime we have $\psi(p) \mid(p \pm 1)$, while $\psi(5)=5$. Thus, for an odd prime $q \neq 5$ with $q \geq p$ such that $q \mid \psi(p)$, we have that $q \mid(p \pm 1)$, which is impossible. Consequently, the primes occurring in the prime decomposition of $\psi(p)$ are all less than p or, as we shall say, $\psi(p)$ "involves" only primes less than p. Now, by a Theorem of Vinson [2], we know that

$$
\phi(p)=2^{r} \psi(p) \text { where } r=0,1, \text { or } 2,
$$

so that $\phi(p)$ also involves only primes less than p.
Suppose $\phi(m)=d p^{\beta}$, where p is a prime greater than 5 , and d involves only primes less than p and $\beta \neq 0$. Then using Lemma 14 of [1] and Theorem 5 of [3] we have that

$$
\phi^{2}(m)=\left\{\begin{array}{l}
{\left[\phi(d), p^{\beta-1} \phi(p)\right] \text { if } \phi\left(p^{2}\right) \neq \phi(p)} \\
{\left[\phi(d), p^{\beta-2} \phi(p)\right] \text { if } \phi\left(p^{2}\right)=\phi(p) \text { and } \beta \neq 1}
\end{array}\right.
$$

where square brackets with integers inside denote the lowest common multiple of those integers. Now, $\phi(d)$ and $\phi(p)$ involve only primes less than p, so that $\phi^{2}(m)=d_{1} p^{\gamma}$, say, where $0 \leq \gamma<\beta$ and d_{1} involves only primes less than p. Carrying on in this way, we eventually find an integer s such that $\phi^{s}(m)$ does not involve p and so, continuing, we may find an integer t such that $\phi^{t}(m)$ involves only 2, 3, and 5. Thus

$$
\phi^{t}(m)=2^{a} 3^{b} 4^{c} \text { for some } a, b, c \geq 0
$$

This justifies the assertion that we need consider only integers of the stated form.

We now define a sequence $\left\{\alpha_{n}\right\}$ by $\alpha_{1}=\alpha-1$, where $\alpha>1$, and $\alpha_{n+1}=$ $\max \left(\alpha_{n}-1,3\right)$ if $n \geq 1$. Then it is easy to see that $\left\{\alpha_{n}\right\}$ eventually takes the constant value 3: in fact, $\alpha_{\alpha-3}=3$ if $\alpha \geq 5$ and $\alpha_{2}=3$ if $\alpha<5$. Now $\phi^{n}\left(2^{a}\right)=2^{\alpha_{n}} \cdot 3$, so that if $\alpha \geq 5$ we have $\phi^{a-3}\left(2^{a}\right)=2^{3} \cdot 3$, and if $a<5$ we have $\phi^{2}\left(2^{\alpha}\right)=2^{3} \cdot 3$. Thus, we see that there exists an integer $u \geq 2$ such that $\phi^{u}\left(2^{a}\right)=2^{3}$. 3 if $\alpha>1$. Similarly, if we define the sequence $\left\{\beta_{n}\right\}$ by
$\beta_{1}=b-1$ ，where $b>1$ ，and $\beta_{n+1}=\max \left(\beta_{n}-1\right.$ ，1）if $n \geq 1$ ，we have that $\beta_{b-1}=1$ if $b \geq 3, \beta_{2}=1$ if $b<3$ ，and that $\phi^{n}\left(3^{b}\right)=2^{3} \cdot \overline{3}^{\beta_{n}}$ ．Thus，there exists an integer $v \geq 2$ such that $\phi^{v}\left(3^{b}\right)=2^{3}$－ 3 if $b>1$ ．

Now we note that $\phi^{4}(2)=\phi^{3}(3)=2^{3} \cdot 3$ and that $\phi^{3}\left(5^{c}\right)=2^{3} \cdot 3 \cdot 5^{\text {c }}$ for any $c \geq 1$ and that $\phi\left(2^{3} \cdot 3 \cdot 5^{c}\right)=2^{3} \cdot 3 \cdot 5^{c}$ holds even for $c=0$ ．Again us－ ing Lemma 14 of［1］we have for $a, b>1$ that

$$
\begin{aligned}
\phi^{u+v}\left(2^{a} 3^{b}\right) & =\left[\phi^{u+v}\left(2^{a}\right), \phi^{u+v}\left(3^{b}\right)\right] \\
& =\left[\phi^{v}\left(2^{3} \cdot 3\right), \phi^{u}\left(2^{3} \cdot 3\right)\right] \\
& =2^{3} \cdot 3,
\end{aligned}
$$

so that

$$
\phi^{u+v}\left(2^{a} 3^{b} 5^{c}\right)=\left[2^{3} \cdot 3,2^{3} \cdot 3 \cdot 5^{c}\right]=2^{3} \cdot 3 \cdot 5^{c}
$$

since $u+v>3$ ．Consequently

$$
\phi^{u+v+1}\left(2^{a} 3^{b} 5^{c}\right)=\phi^{u+v}\left(2^{a} 3^{b} 5^{c}\right)
$$

The remaining cases are when $a \leq 1$ or $b \leq 1$ ，and it is easy to check that $\phi^{v+3}\left(2^{a} 3^{b} 5^{c}\right)=\phi^{v+2}\left(2^{a} 3^{b} 5^{c}\right)$ if $a \leq 1$ and $\phi^{\bar{u}+3}\left(2^{a} 3^{b} 5^{c}\right)=\phi^{u+2}\left(2^{a} 3^{b} 5^{c}\right)$ if $b \leq 1$ ．

REFERENCES

1．J．H．Halton．＂On the Divisibility Properties of Fibonacci Numbers．＂ The Fibonacci Quarterly 4，No． 3 （1966）：217－240．
2．J．Vinson．＂The Relation of the Period Modulo m to the Rank of Appar－ ition of m in the Fibonacci Sequence．＂The Fibonacci Quarterly 1，No． 1 （1963）：37－45．
3．D．D．Wall．＂Fibonacci Series Modulo m．＂American Math．Monthly 67 （1960）：525－532．

＊－为为为

SOME REMARKS ON THE PERIODICITY OF THE SEQUENCE OF FIBONACCI NUMBERS－II

T．E．STANLEY
The City University，London E．C．I，U．K．
The Fibonacci sequence $\left\{F_{n}\right\}$ is defined by

$$
F_{0}=0, F_{1}=1, F_{n+1}=F_{n}+F_{n-1} \quad(n \geq 1) .
$$

If t is an integer greater than 2 and $\phi(t)$ is the length of the period of the sequence reduced to least nonnegative residues modulo t ，it was shown in ［2］that $\phi\left(F_{m-1}+F_{m+1}\right)=4 m$ if m is even and $\phi\left(F_{m-1}+F_{m+1}\right)=2 m$ if m is odd．It follows for $m>4$ that

$$
\phi\left(F_{m-1}+F_{m+1}\right)=\frac{1}{2}\left(\phi\left(F_{m-1}\right)+\phi\left(F_{m+1}\right)\right) .
$$

I conjectured in the same paper that if $m-k>3$ then

$$
\phi\left(F_{m-k}+F_{m+k}\right)=\frac{k}{2}\left(\phi\left(F_{m-k}\right)+\phi\left(F_{m+k}\right)\right)
$$

The object of this note is to show that this conjecture is false and to give the correct answer in some special cases．

