## SUMMATION OF THE SERIES $y^{n}+(y+1)^{n}+\cdots+x^{n}$

## W. G. WALLER and MAHADEV bANERJEE

Louisiana State University, Baton Rouge, LA 70803
In 1970, Levy [1] published a number of results concerning the sum of the series $1^{n}+2^{n}+\cdots+x^{n}$, which is known to be an $n+1$-degree polynomial $P_{n}(x)$ whenever $x$ is a positive integer. However, there is a natural generalization that will also hold for negative integers and zero as well. This is given in the following theorem.
Theorem 1: For each positive integer $n$ there is exactly one polynomial such that

$$
\sum_{k=y+1}^{x} k^{n}=P_{n}(x)-P_{n}(y)
$$

for all integral values of $x$ and $y$, where $y<x$.
This theorem also holds for $n=0$ if $0^{0}$ is interpreted as 1 . The proof follows easily from two lemmas.
Lemma 1: For each integer value of $x \geq 0$,

$$
\sum_{k=1}^{x} k^{n}=P_{n}(x)-P_{n}(0) .
$$

This is true because $P_{n}(0)=0$ for all $n$.
Lemma 2: For each integer value of $y<0$,

$$
\sum_{k=y+1}^{0} k^{n}=P_{n}(0)-P_{n}(y)
$$

Proo f:

$$
\sum_{k=y+1}^{0} k^{n}=\sum_{j=0}^{-y-1}(-j)^{n}=(-1)^{n} P_{n}(-y-1)=-P_{n}(y),
$$

where the last equality follows from Theorem 3 in the paper by Levy. When $x$ is a positive integer, $P_{n}(x)$ is the sum of the series from 1 to $n$, and when $x$ is a negative integer, then $-P_{n}(x)$ is the sum of the series from $x+1$ to 0 .

## REFERENCES

1. L. S. Levy. "Summation of the Series $1^{n}+2^{n}+\cdots+x^{n}$ Using Elementary Calculus." American Math. Monthly 77, No. 8 (Oct. 1970):840-852.
