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Let p be a fixed integer greater than 1 and define un for all integers 
n by 

(1) . uQ = 05 w1 = 1, un+2 = pun + 1 + un» 

Then ul9 u2, • . . is an increasing sequence of integers with u± = 1 and hence 
a function o(n) is well defined for all n in N = {09 1, 25 **»} by 

(2) a(0) = 0S o(n) = w.+1 + a(n - ẑ -) for u^ <_n < Uj+1. 

Let s = (p + /p2 + 4)/2 and 5n = [ns]9 where [x] denotes the greatest inte-
ger in x» 

It is shown below that the spectral sequence {Sn } and the shift func-
tion o(n) are related by the equation 

(3) Sn = u2 + o(n - 1) 
and that {Sn} has the self-generating property that 

p if n is not in A = {S19 S2$ S39 . . . } ; 
(4) 5 n + 1 - S„ _ 

p + 1 if n is in A, 
Also investigated are representations of positive integers in terms of {un}9 

partitions of Z+ = {1, 29 »„» } into several sequences related to o(ji)ox Sn9 

the function counting the number of integers in AD{19 29 * „ » 3 n} s and prop-
erties of "triangles" of entries -, defined, for certain .fixed x9 by 

[nx] - [kx] - [(n - k)x] for k = 0S 1, 

Most of the results presented here are analogous to those given in the 
authors1 paper [4] in which the role of the present un is played by hn sat-
isfying 

hi = 2 ^ 1 for 1 < i < d9 hn+d + hn = hn + 1 + •-. + V d - i -

The Fibonacci numbers Fw+1 are the case of the hn with d=2» The Fibonacci 
numbers could also be dealt with here by allowing p to equal 1; then the se-
quence u19 u2$ «** must be replaced by ii2, u3§ ... in defining o(n). 

For a bibliography on spectra of numberss see [3]. 

1. PROPERTIES OF un 

Here we state the properties of the un used below* Proofs are omitted 
since they are well known or easily derived, or both. Let rn = un+1/un for 
n in Z+* 

Lemma 1: 
(a) For every k in Z+s there is exactly one j in Z+ with u • <_ k < u- + 1. 
(b) r1 < P 3 < P 5 < . . . < s < • 
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(c) u1,n - u u 10 = (~l)n for all n in Z. 
v ' n+l n n+2 x ' 
W ) ^ " ̂ n+i = (~Dn/Kun+1) for n in Z+. 
(e) gcd (un, un+1) = 1 for all n in Z. 

(f) u2n = p(w2w-i + u2n„3 + ••• + w1) for n in Z+. 

(g) ^ 2 n „ x = P(^2n-2 + "2n-i> + ••• + «2) + ̂  for n in Z+. 

2. RATIONAL APPROXIMATION 

Let x be a positive irrational number. Then9 we define a Favey quadru-
ple for x to be an ordered quadruple (a9 Z?9 c9 d) of positive integers9 such 
that bo - ad = 1 and a/2? < # < old. 

The following result slightly extends some material from the theory of 
Farey sequences. (See [5] for background.) 

Lemmci 1: Let (a9 £>, c9 d) be a Farey quadruple for x and let k be a positive 
integer less than b + d. Then: 

(a) There is no integer h such that alb < h/k < c/d. 
(b) [kx] = [ka/b]. 
(c) I f d\k, [kx] = [ko/d]. 
(d) I f fc = de w i t h e i n [ 1 9 29 . . . 9 b - 1 } , [far] = [fo?/d] - 1. 

The proofs are left to the reader. 

We note that parts (b) and (c) of Lemma 1 tell us that 

<M2m+2> « 2 m + l ' M2m + 1> W 2 M ) a n d K * ' Um-1> U2m + X' UlJ 

axe Farey quadruples for s whenever m is a positive integer. This is extended 
in the following result. 

Lmmci 3'- Let p £ {2, 3, .. . } , s = (p + /p2 + 4)/2, w be as in (1), and m e 
Z+. Then each of 

(p9 1, 1 + kps k) for k = 1, 29 ...9 p; 

(u 2 m + A:u2m + 1 9 u2 m„_x + k u 2 m 9 M2m + 1 , u 2 m ) for k = 09 1, . . . . p ; 

<W2m+2» M 2 m + 1 ' W 2 m + 1 + ^ 2 m + 2 * M2m + ^ 2 m + 1 > f °r k = °> X» °°" ?'* 
is a Farey quadruple for s. 

VKOO^i Let (a9 £9 e9 d) represent one of these quadruples. The property 

be - ad = 1 

is easily verified using Lemma 1(c). The property 

alb < s < old 
can be shown using Lemma 1(b) and the fact that 

a_ < a + o £ 
b b + d d 

whenever b and d are positive and a lb < old. 

3. SPECTRA 

Let [x] denote the greatest integer in x9 that is9 the integer such that 
[x] <_ x < [x] + 1. The sequence [x] , [2x], [3a;], ... is called the spectrum 



1980] RECURSIVE, SPECTRAL, AND SELF-GENERATING SEQUENCES 99 

of x. It is a well-known result [1] that if y is an irrational number greater 
than 1 and (l/x) + (1/z/) = 1 then the spectra {[nx]} and {[ny]} partition the 
positive integers Z+B 

Let p be in {29 3, 4, . ..}, s = (p + /p2 + 4)/2, x = s - p + 1, and z/ = 
s + 1. Also let Sn = [ns], Xn = [nx] , and Jn = [ra/]. It is easily seen that 
y is irrationals y > ls and (l/#)+(l/z/) = 1; hence the spectra {Xn}and{Jn} 
partition Z+* It is also clear that Yn - Xn + np and that each of Xn and Yn 
is an increasing function of n. It follows that {Xn} and {Yn} may be self-
generated using the following algorithm* 

X1 - 1 9 Y1 - 1 + p, Xk for /c > 1 is the smallest positive integer 
(5) 

not in the set {X±, 71, X£, Y2, ...9Xk_l9 ^ _ X K a n d yfe = xk + kP-

Then {5n} is easily obtained from Sn = Yn - n = Xn + n(p - 1). It is shown 
below that {Sn} can be self-generated from the initial condition S = p and 
the difference property (4) above, 

The following result gives symmetry properties of finite segments [x] s 
. . . , [ex] of a spectrum for the cases in which e is the b or d of a Farey 
quadruple (a, £>, c, a7) for x, 

Lojfnma 4' Let (a, b5 c3 d) be a Farey quadruple for a;* Then: 

(a) [bx] = [fee] + [(& - fc)ar] + 1 for fc =. 1, 2, .. . , b - 1; 
(b) [dx] = [kx] + [(d - k)x] for k = 0, 1, ..., d. 
Vn.oo{ oj [a) i We have [bx] = a from Lemma 2(b). Let 0 < k < b5 j = b - k9 
h = [kx] , and i - [jx]. Since a? is irrational.* h < kx and so 7z/fc < x. This, 
x < c/a7, k < b5 and Lemma 2(a) imply that /z/fc < alb. Similarly, ilj < a/2?. 
Since (/z + i) / (k + j) is in the closed interval with endpoints h/k and i/j, we 
have (/z + i) I (k + j) < a lb. As k + j = b3 this means that 7z + i < a or [fee] 
+ [jx] < [bx]. Then the desired result follows from the fact that9 for all 
real y and z, 

(6) [y + z] - [y] - [z] e {0, 1}S 

P/L00^ 0^ (6) : Lemma 2(d) t e l l s us t h a t [dx] = c - 1. We only need c o n s i d e r 
t h e k w i t h 0 < k < d. Let j = d - k5 [kx] = h5 and [jx] = i . Then /z + 1 > fee 
and so (/z + I) Ik > x. T h i s , x > a/2?, k < d9 and Lemma 2(a) then imply t h a t 
(h + l)lk > old. S i m i l a r l y , ( i + l ) / j > c?/d, and hence (h + 1 + i + 1)/(fe + 
j ) > c /d \ As k + j = d7, one has 7z + i + 2 > c?s which i m p l i e s 

[kx] + [(a7 - /c)ar] + 1 > [ d s ] . 

Again, the desired result follows from (6). 

4. THE SHIFT PROPERTY 

When convenient, Sn = [ns] will also be denoted by 5(n). Also, we re-
call that o(n) is defined in (2) and Uj is defined in (1)0 
lkQ.0K.Qm 1: If Uj < n < u-j + u. + 1 and j e Z+

S then ̂ (n) = uj. + 1 + S(n - w^-). 

VKOOJ* Let (a5 Z?9 c9 d) be the Farey quadruple (u2m, u2m_i9 ^2m + î  ̂ 2m) f o r 

So Then Lemma 2(b) tells us that Sin) = [ns] = [np2m_1] for 0 < n < u2m_1 4 
Hence 

+ (n - ^2m-l)U2 
(7) 5(n) = [nu^/u^.J = 

f ° r U2m-1 < n < U2m-1 + U
2 

u2m + S{n 
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Next we use the Farey quadruple (u2m+2, u
2m+i' uz +i5 U2 ^ ^or s anc^ w e 

find, from Lemma 2(c) and (d), that 

S(n) = [nr2m] if 0 < n < u2m + w2w + 1 and u2m\n, 

S(n) = [nr2m] - 1 if n = kulm with ?c in {1, 2, ..., w - 1}. 

Using these facts, one can verify that 

(8) S(n) = u2m + 1 + S(n - u2m) for u2m < n < u2m + u2m + 1 « 

The desired result follows from (7) when j is odd and from (8) when j is even. 

= u2 + o(n — 1) for n in Z+* 

Vhxroi} Since S± = p = u2 and a(0) = 0, the result holds for n = 1. Then a 
strong induction establishes it for all positive integers n using the conse-
quence 

S(n) = u
3- + i + $(n ~ Uj) for Uj < n <_ u^+1 

of Theorem 1 and the consequence 

o(n - 1) = u.M1 + a(n - 1 - u.-) for UJ < n < u... 

of the definition (2)„ 

5. SEQUENCES OF COEFFICIENTS 

Let 7 be the set of all sequences E = [el5 e2$ **«] with each e^ in {0, 
1, „ . . , p}, with an t0 such that e^ = 0 for i > i0, and with e^ = p implying 
that both i > 1 and ei_1 = 0. For such S7, the sum 

g l M n + l + e2Uri + 2 + 23
Wn+3 + ° ° ° 

is actually a finite sum which we denote by E • Un* Also, we let E • U stand 
for E • U0. 

Lmmci 4: If # and 5" are in 7 and E ° U = Ef • [/, then E = Ef» 

This is shown using parts (f) and (g) of Lemma 1* 

Th<L0KQm 3'* The sequences of 7 form a sequence EQ 9 E±5 E25 » » « such that 

Em • U = m. 

VHJQ0£} The only E in 7 with tf • U = 0 is [0, 0, , . . ] , which we denote by EQ. 
Now we assume that k > 0, and that there is a unique Em in 7 with Em * U = m 
for w = 0, 1, ..., k - 1. By Lemma 1(a), UJ <_ k < UJ + 1 for some J in Z+„ Let 
h = k - Uji then we can let [ 6 ^ , 6 ^ , . ••] be t;he unique 5^ in 7 with 5^ * £/ 
= h. Then let efej. = 1 + ehJ , £ ^ = e ^ for £ ̂  j, and ̂  = [ekl, ek2, ...]. 
Since 

^ < uj+i = Puj + uj-± < (P + DWJ» 

one sees that g^- £ p and that if ekj- = p9 then j > 1 and £k!t/-i = 0. Thus, 
Eji is in 7. Clearly, 

Ek 9 U = Eh * U + ud = h + Uj = k. 
Finally, there is no other E in 7 with E * U = k by Lemma 4* 

The case with p = 2 of Theorem 3 was shown in [2]. 



1980] RECURSIVE, SPECTRAL, AND SELF-GENERATING SEQUENCES 101 

6* PARTITIONING 7 

We now partition 7 into subsets V1, 72, 73 and use these subsets to in-
dicate the relationship of Em+1 to £'m. Let E = [els e2S . ..] be in 7; then, 
^ is in 7-L if ex = p - 1, # is in V2 if e1 = 0 and e2 = p5 and S7 is in 73 if 
ex < p - 1 and e2 < p, Since £-,_ > 0 implies e2 < p9 one sees that each E of 
7 is in one and only one of the 7 . 

Lemma 5: Let -^ = [e^ e2, ...] and S,w + 1 = [f±s fz, . . . ] . Then: 

(a) If tf m is in 7X , let j be the smallest positive integer such that 
e2j+i < P* therl /i = °  f o r ^ < 2J* fig = 1 + e2. , and fi = ei for 
i > 2j. 

(b) If Em is in 72, let In be the smallest positive integer such that 
ezh < P5 then fi=0 for 1 1 i 1 2/i - 2, fih-i = 1 + e2/2-i9 anc^ 
/^ = e^ for i 2. 2?z. 

(c) If Em Is in F3, f1 = 1 + e1 and j^ = e^ for i > 1. 

_R̂ 00j[: If we let F = [/1S /2, .,.] with the fi as in (a), (b) , and (c), it 
Is easily seen that F Is in 7 and F*U=l+Em»U=l+m. This and Theo-
rem 3 establish the present result. 

lemma. 6: Let An(m) = Em+1 * Un - Em • Un« Then: 

(a) An(m) = un + wn+ 1 if #w is in V1. 

(b) An(/7z) = un + 1 if #m is in 72 or 73. 

P/iOO^z These statements are easily verified using the parts of Lemma 5. 

7* POWERS OF a 

Let Em = [eml9 em29 ...] and let h be the largest i with emi f 09 then 
one can use the definition of a in (2) to show that 

a(772) = o{emlu1 + --• + ewfcM?i) = emlu2 + ••• + ewf c^+ 1 = ̂  * ^V 

Hence, there is no contradiction in defining on for all integers n to be the 
function from N to Z given by 

(9) a"(TTZ) = ̂  • Un = emlun+1 + em2un+2 + -•- . 

Also let an be the function from Z+ to Z defined by 

(10) aM(fc) = un+1 + an(k - 1). 

We note that a0 (k) = ks that ax(/c) = Sk5 and that, for fixed k9 the an(&) 
satisfy the same recurrence as the uns i.e,s 

an+2ik) = pan+1(k) + an(k). 
We also let ̂ n be the image set of ans i.e.s 

An = {an(k) : k e Z+}. 

Lojnma 7: For n i n { 1 , 2 } s ^ n = {i + 1 : 5^ e 7^} e 

VH.00^* Using (10) and ( 9 ) , one sees t h a t 

(11) an{m + 1) = (1 + eml)un + 1 .+ em2un+2 + em3un+3 + . . . . 

As 772 t a k e s on a l l v a l u e s i n N$ Fm = [p - 1, &ml* £m2» • • • ] ranges through a l l 
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the E- in V1 and Gm = [0, p, eml9 eml9 ...] ranges through all the 5^ in 72. 
It follows from (11), Lemma 5, and the recursion in (1) that if Fm = Ej then 

j + 1 = Ej + 1 • Z7 = a1(77Z + 1) 

and, similarly, that if £m = ̂  then 

h + 1 = i^+1 • Z7 = a2(7W + 1). 

These facts establish the lemma. 

8. SELF-GENERATING SEQUENCES 

Clearly, an(l) = un+1. This, and the following result, provide an easy 
self-generating rule for obtaining the sequence {a^QC)} and a similar easy 
rule for using {a1(k)j to obtain any ian(k)}. 

Tkzofiem 4: For n in Z and j in Z+, an(j + 1) - an(j) equals un + ^n + 1 if J 
is in A± = {^(fc) : k e Z+} and equals un+1 otherwise. 

VtiOQfc Lemma 7 tells us that A± = {j : E._±e V±}. Also, 

anU + 1) - aB(j) = anU) - a"(j - 1) = ̂  • 27n - ^J.„1 • Un. 
Hence, the desired result follows from Lemma 6. 

IkdOKom 5: The number of integers in A f] {1, 2, ..., m} is a_1(m + 1) . 

VhJQQJ: Let A_x(i) = a_x(i + 1) - a^1(i). Clearly, 

(12) a_!(7W + 1) = a_x(l) + A„x(l) + A_x(2) + ••• + A_1(/n). 

Now a_x(l) = u0 + a"1(0) = 0 + 0 = 0. Also, Theorem 4 tells us that A_1(i) = 
uQ = 0 when £ is not in A1 and A_1(i) = u0 + u_1 = 1 when £ is in 4 r Thus, 
the sum on the right side of (12) is the number of £ that are in both {1, 2, 
. .., m] and A19 as desired. 

9. PARTITIONING Z+ 

We saw in Lemma 7 that An = {£ + 1 : E^ e Vn} for ft in {1, 2}. Let B = 
{j + 1 : 5̂ . e F3}. Since V1, 72, F3 is a partitioning of 7 = {#0, fi^, . ..}, 
it follows that A19 A2$ B is a partitioning of Z+ = {1, 2, ...}. 

For k = 19 2, .,., p - 1, we let 

&k(n) = a1(n) + k - p = k + a (ft - 1) 
and let 

5k = {bk(n) i n e Z+}B 
It is easily seen that 

Bk = {m i eml = k5 em2 < p} for 1 <. k < p 
and that B19 B29 ..., B x is a partitioning of B. Hence, the sequences 

{b^n)}, {b2(n)} {2>p_!<«)}, ia^n)}, {a2(n)} 
partition the positive integers. 

10. SPECTRUM TRIANGLES 

Let x be irrational and greater than 1 and let , denote [nx] - [nk] -

[(n - k)x] for integers n and k with 0 £ /c £ ft. It now follows from (6) that 
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L is always in {0, 1}. The fact that ^ = 0 = and the symmetry prop-

erty L = I - are obvious. Part (c) of the following result implies 

other symmetries for certain finite subtriangles of the infinite triangle of 

values of , . 

TkdQtim 6: Let (a, bs c9 d) be a Farey quadruple for x» Then: 

(a) 

(b) 

(c) 

b 
k 
'd 

d - s 
t 

1 for 0 < k < b. 

0 for 0 < fc < d. 

< s < d. + *].[;] f „ . < , 
VK.00£: Parts (a) and (b) are a restatement of Lemma 4. For (c) we use Lem-
ma 4(b)9 or the present part (b)s to see that 

[dx] = [(s - t)x] + [(d - s + t)x] = [sx] + [(d - s)x], 

Hence [(d - s + t)x] - [(d - s)x] = [sx] - [ (s ~- t)x] 9 and so 

P " S
t
 + *] = [W - s + t)x] - [to] - [W - s)x] 

= [SX] - [tx] - [ (8 - t ) x ] = M 

as d e s i r e d * 

REFERENCES 

1. S. Beatty. "Problem 3177." American Math. Monthly 33 (1926):1593 and 
(Solutions), £2?£d. 34 (1927):159. 

2. L. Carlitz9 Richard Scoville, & Verner E. Hoggatt, Jr. "Pellian Repre-
sentations." The Fibonacci Quarterly 10 (1972):449-488. 

3. Ronald L. Grahams Shen Lins & Chio-Shih Lin. "Spectra of Numbers." Math. 
Magazine 51 (1978):174-176. 

4. V. E. Hoggatt9 Jr.9 & A. P. Hillman. "Nearly Linear Functions." The 
Fibonacci Quarterly 17 (1979):84-89. 

5. Ivan Nivan & Herbert S. Zuckerman. An Introduction to the Theory of 
Numbers, pp. 128-133. New York: John Wiley & Sons, Inc., 1960. 


