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Let p be a fixed integer greater than 1 and define u, for all integers
7 by

(1) Uy = 0, uy =1, Upgy = Plhyyy F Une

Then Uys Uys +.. 18 an increasing sequence of integers with u; = 1 and hence
a function g(n) is well defined for all n in ¥ = {0, 1, 2, ...} by
(2) g(0) = 0, oln) = Uspy T o(n - uy) for Uy SN < Uy
Let s = (p +~Vp2 + 4)/2 and S, = [ns], where [x] denotes the greatest inte-
ger in x.

It is shown below that the spectral sequence {S5,} and the shift func-
tion 0(n) are related by the equation

(3) Sy =u, +on -~ 1)
and that {S,} has the self-generating property that

% p if n is not in 4 = {5, S,, S5 «..};
-8, =

29
(4) Sn+1

p+ 1 dif n is in 4.
Also investigated are representations of positive integers in terms of {u,},

partitions of Zt = {1, 2, ... } into several sequences related to o(n)or S,,
the function counting the number of integers in AN{l, 2,..., n}, and prop-

erties of "triangles' of entries {Z] defined, for certain fixed x, by
[ﬂ = ] - [ke] - [ = K)x] for k = 0, 1, ..., 7.

Most of the results presented here are analogous to those given in the
authors' paper [4] in which the role of the present u, is played by k. sat-—
isfying

1 .
hy =277 for 1 K2 Sdy Byyy v hy, =h e R .
The Fibonacci numbers F,.; are the case of the %, with d=2. The Fibonacci
numbers could also be dealt with here by allowing p to equal 1; then the se-
quence ;s Uy, ... must be replaced by u,, uy; ... in defining a(n).
For a bibliography on spectra of numbers, see [3].

1. PROPERTIES OF u,

Here we state the properties of the u, used below. Proofs are omitted
since they are well known or easily derived, ox both. Let », = un+l/un for
n in Z%.
Lemma 1:

(a) For every k in Z*, there is exactly ome J in 2t with u, < k < Uy -

J
(b) 7y <r; <rs < o < g < aon < re <r, <7,

57
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2 — (_1\" .
(c) Uppq = Uy, = (-1)" for all n in Z.

@ r, -r, ., = D"/ (uu,,,) for n in Z*+.

(e) ged (uy,s u,y ;) =1 for all n in Z.
(£) wuy, =pQuy,_y +u,,_, + - +u) for n in Z*.

= o o 0 . +
(8) Uy =Py, _, *u, _, + +u,) +u, for n in ZF.

2. RATIONAL APPROXIMATION

Let x be a positive irrational number. Then, we define a Farey quadru-
ple for x to be an ordered quadruple (a, b, ¢, d) of positive integers, such
that be - ad = 1 and a/b < x < ¢/d.

The following result slightly extends some material from the theory of
Farey sequences. (See [5] for background.)

Lemma 2: Let (a, b, ¢, d) be a Farey quadruple for & and let k be a positive
integer less than b + d. Then:

(a) There is no integer % such that a/b < h/k < ce/d.

(b) [kx] = [kal/b].

(¢) If dfk, [ke] = [ke/d].

(d) 1I1f k = de with e in {1, 2, ..., b = 1}, [kx] = [ke/d] - 1.

The proofs are left to the reader.
We note that parts (b) and (c) of Lemma 1 tell us that

and (4, , u

2m om=-1° Yom+1? u2m)
are Farey quadruples for s whenever mis a positive integer. This is extended
in the following result.

Lemma 3: Let p e {2, 3, ...}, s = (p + Vp*> + 4)/2, u be as in (1), and m €
Z%. Then each of

WUoptgs Upptrs Uppyrs Uop)

(, 1, 1 + kp, k) for k =1, 2, ..., p;
(Uom + Kigpprs Uppoy F Kidgps Uppiys Upy) for k=0, 1, «ovy p3

+ ku + ku ) for k =0, 1, ..., p;

(Uppmyos Upmirs Yopin om+2° Yom 2m+1

is a Farey quadruple for s.

Proog: Let (a, b, ¢, d) represent one of these quadruples. The property
be —ad =1

is easily verified using Lemma 1(c). The property
alb < s < e/d

can be shown using Lemma 1(b) and the fact that

a.a + c c

22T 2 ¢

b b+d d

whenever b and d are positive and a/b < c¢/d.

3. SPECTRA

Let [x] denote the greatest integer in x, that is, the integer such that
[x] <2 < [x] + 1. The sequence [x], [2x], [3x], ... is called the spectrum
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of x. It is a well-known result [1] that if y is an irrational number greater
than 1 and (1/x)+ (1/y) = 1 then the spectra {[nx]} and {[ny]} partition the
positive integers Zt.

Let p be in {2, 3, 4, ...}, s = @+ /p* +4)/2, x =s-p+ 1, and y =
s + 1. Also let S, = [ns], X, = [nx], and Y, = [ny]. It is easily seen that
y is irrational, y > 1, and (1/x)+ (1/y) = 1; hence the spectra {X,}and {7,}
partition Z*. It is also clear that ¥, = X, + np and that each of X, and Y,
is an increasing function of n. It follows that {X,} and {Y,} may be self-
generated using the following algorithm.

X1 =1, Yl =1+ p, Xy for k > 1 is the smallest positive integer
(5)
X

Y X Y

29 v A g k—l}’ and 'Yk =Xk+kp.

not in the set {X,, Y,, X,,

Then {S,} is easily obtained from S, =Y, - n =X, + n(p - 1). It is shown
below that {S,} can be self-generated from the initial condition Sl =p and
the difference property (4) above.
The following result gives symmetry properties of finite segments [x],
., [ex] of a spectrum for the cases in which e¢ is the b or d of a Farey
quadruple (a, b, ¢, d) for x.

Lemma 4: TLet (a, b, ¢, d) be a Farey quadruple for x. Then:

(a) [bx] [kxe]l] + [(Bb - K)x] + 1 for k =1, 2, ..., b - 1;
(b) [dx] = [kx] + [(d - k)x] for k =0, 1, ..., d.

Proof of (a): We have [bx] = a from Lemma 2(b). Let 0 < k <b, j=5b -k,
h = [kx], and 7 = [jx]. Since x is irrational, h< kx and so hA/k < x. This,
x <ecl/d, k <b, and Lemma 2(a) imply that A/k < a/b. Similarly, Z/j < a/b.
Since (A + 2)/(k + J) is in the closed interval with endpoints h/k and 2/, we
have (A + 2)/(k + §) < a/b. As kK + g = b, this means that & + © < a or [kx]
+ [Jx] < [bx]. Then the desired result follows from the fact that, for all
real y and 2,

(6) [y + 2] - [y] - [2] e {0, 1}.

Proof of (b): Lemma 2(d) tells us that [dx] = ¢ - 1. We only need consider
the Kk with 0 < k < d. Let j =d - k, [kx]l=h, and [jxl=%. Then h + 1 > kx
and so (W + 1)/k > x. This, = > a/b, k < d, and Lemma 2(a) then imply that
(h + 1)/k > e¢/d. Similarly, (£ + 1)/J > e/d, and hence (A + 1 + 2 + 1)/(k +
J) >e¢/d. As k+ J =d, one has h + 7 + 2 > ¢, which implies

[kx] + [(d - K)x] + 1 > [dx].

Again, the desired result follows from (6).

L4, THE SHIFT PROPERTY

When convenient, S, = [#s] will also be denoted by S(n). Also, we re-
call that o(n) is defined in (2) and u; is defined in (1).
i1 +S(7’L - ,uj).
Proof: Let (a, b, ¢, d) be the Farey quadruple (U,,»> Usm—1s Upmyls Uop) fOT

§. Then Lemma 2(b) tells us that S(n) = [ns] = [nr,,_;] for 0 < n < Upp_q +

Theorem 1: If u; <n < u; + Uiy and § € 2T, then S(n) = u

Uy * Hence ( )
: u u + n - u U
_ _ 2m—=1"2m 2m=1 2my _
(7) S() = [nuy, /uy,—;] = [ o :|- om TS0 = uy,0)
for Uppey <N < Uy o Fu, .
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Next we use the Farey quadruple (u
find, from Lemma 2(c) and (d), that

om+2? Yomar® Yomers u2m) for s and we

S(n) = [nr,,] if 0 <n < wu, +u, , and u, [n,
Sm) = [nr, 1 -1 if n = ku, with k in {1, 2, ..., Uppgr = 1}.
Using these facts, one can verify that
(8) S(M) =ty qpy + 5 = uy,) for u,, <n <wu, +u, 4.

The desired result follows from (7) when j is odd and from (8) when j is even.
Theorem 2: S5, = u, + o(n - 1) for n in Z*.

Proog: Since S, =p =u, and 0(0) = 0, the result holds for n = 1. Then a
strong induction establishes it for all positive integers »n using the conse-
quence

S(n) = Ujty + S(n - uj) for u; <n §_Mj+l

of Theorem 1 and the consequence

on - 1) = Uus + o(n -1 - uj) for u. <n < u;

+1 J

+1
of the definition (2).

5. SEQUENCES OF COEFFICIENTS

Let V be the set of all sequences E = [e,, €,, ...] with each e¢; in {0,
1, ..., p}l, with an 7, such that e; = 0 for ¢ > 7y, and with e¢; = p implying
that both © > 1 and e,_, = 0. For such %, the sum

e1lyyy T eylyy, teju, gt

is actually a finite sum which we denote by £ < U,. Also, we let E < U stand
for E + U,.
Lemma 4: If E and E' are in Vand F « U = E' « U, then E = E'.

This is shown using parts (f) and (g) of Lemma 1.
Theorem 3: The sequences of V form a sequence E,, B\, E .. such that
E, «U=m.

Proof: The only E in V with E « U = 0 is [0,0, ...], which we denote by E,.
Now we assume that X > 0, and that there is a unique E, in V with E, * U =m

1° 2’

form=0,1, ..., k = 1. ByLemma 1(a), Uj <k < uj4q, for some J in Z*t. Let
h =k - u;; then we can let [e;;,€y,s -..] be the unique E;, in V with &, - U
= k. Then let ex; = 1+ €nis Cri = Cng for 7 # j, and E, = [ekl, Chgs woe]e
Since

ki <ujp, =pu; +u;_y < (p+ Duy,

one sees that e;; < p and that if ¢;; = p, then j > 1 and ¢; ;_; = 0. Thus,
Ey is in V. Clearly,

Ey ~U=E, «U+u; =h+u; ==k
Finally, there is no other F in V with £ ¢« U = k by Lemma 4.

The case with p = 2 of Theorem 3 was shown in [2].
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6. PARTITIONING V

We now partition V into subsets Vis Vys V3 and use these subsets to in-
dicate the relationship of E,+; to E,. Let E = [e;, e,, ...] be in V; then,
Eis in V, if e; =p - 1, E is in V,if ¢; = 0 and e, = p, and F is in V, if
e, <p~-1and e, <p. Since ¢; > 0 implies ¢, < p, one sees that each F of
V is in one and only one of the V .

Lemma 5: Let E, = [el, €,5 ».-] and E 4. = [fl, fz’ ...]. Then:

(a) 1If E, is in V,, let j be the smallest positive integer such that
€541 < Pp; then f; =0 for ¢ < 2j, f,;=1+e,;, and f; = ¢e; for
T > 24.

(b) 1If E, is in V,, let h be the smallest positive integer such that

@,, <p; then f; =0 for 1 <72 <2h -2, fo_, =1+e,,_,, and
f; = ey for 7 > 2h.

(¢) If Epis din V,, f; =1+ e, and f; = e; for 7 > 1.

Proog: 1If we let F = [f,, fys +«-]1 with the f; as in (a), (b), and (c), it
is easily seen that F is in V and F =« U =1+ E, « U =1 + m. This and Theo-
rem 3 establish the present result.

e U, - E, *U,. Then:

n

Lemma 6: Let A,(m) =E, .
(a) A,(m) = u, + u,,, if E, is in V,.
(b)Y A, (m) =u

Proof: These statements are easily verified using the parts of Lemma 5.

1 if E, is in V2 or Vs'

7. POWERS OF o

Let E, = [€p1s €p2s -.-]1 and let h be the largest ¢ with ep; # 0, then
one can use the definition of 0 in (2) to show that
a(m) = a(e, Uy + - +eu) =e u, v+ +e u, = -U.

Hence, there is no contradiction in defining ¢” for all integers n to be the
function from N to Z given by

(9 o"(m) =E, - U, = Cpilpry T @polh,gn +oe
Also let a, be the function from Z% to Z defined by
(10) a,(k) = u,q +0"(k - 1).

We note that a,(k) = k, that a,(k) = S, and that, for fixed k, the a,(k)
satisfy the same recurrence as the u,, i.e.,

A2 (k) = pan+1(k) + an(k)-
We also let 4, be the image set of a,, i.e.,

4, = {a,(k) : ke Z¥}.

Lemma 7: For n in {1, 2}, 4, = {2 + 1 : E; ¢ V, }.
Proof: Using (10) and (9), one sees that

(11 a,(m+ 1) = (1 +e, Du + e

n+1 m2un+2 te

maun+3 + ...

As m takes on all values in N, F, = [p -1, €1 emz,...] ranges through all
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the E} in V; and G, = [0, p, e,15 €455 -..] ranges through all the E, in V,.
It follows from (11), Lemma 5, and the recursion in (1) that if F, = E; then

J+1l=E_ , «U=a(m+1)
and, similarly, that if G, = E, then
h+1l=E_, *U=a,@m+1).

These facts establish the lemma.
8. SELF-GENERATING SEQUENCES

Clearly, a,(1) = u,,,- This, and the following result, provide an easy
self-generating rule for obtaining the sequence {a;(k)} and a similar easy
rule for using {a;(k)} to obtain any {a,(k)}.

Theorem 4: For n in Z and J in 2%, a,(j + 1) - a,(j) equals u, + u, ., if J
is in 4, = {al(k) : ke 2%} and equals u,,, otherwise.

Proof: Lemma 7 tells us that 4; = {Jj : E,_,€ V,}. Also,

ay(J + 1) - a,(d) =0"(g) -0"(J - 1) =E; U, =E;_| * Uy

Hence, the desired result follows from Lemma 6.

Theonem 5: The number of integers in A NA{L, 2, ..., m} is a_,(m + 1).

Proof: Let A_,(2) = a_,(Z + 1) - a_;(¢). Clearly,

(12) a_y(m+ 1) =a_; (1) + A, (1) +A_;(2) + - +A_,(m.

Now a_, (1) = u, + o"(0) = 04+ 0 = 0. Also, Theorem &4 tells us that A_l(i) =

U, = 0 when 7 is not in 4, and A_,(¢) = u, + u_;, = 1 when © is in 4,. Thus,

the sum on the right side of (12) is the number of ¢ that are in both {1, 2,
., m} and A,, as desired.

9. PARTITIONING 2%

We saw in Lemma 7 that 4, = {2 + 1 : E; € V,} for n in {1, 2}. Let B =
{g+1: Ej € Vgl. Since Vis V,5 V; is a partitioning of V = {Eo’ E, et
it follows that 4,, 4,, B is a partitioning of Z* = {1, 2, ...}.

For k =1, 2, ..., p - 1, we let

b, (n) = al(n) +k-p=k+on-1)

and let

B, = {by(m) : ne 2%}
It is easily seen that

By =1{m : e, =k, ey, <pl for 1 <k<p
and that B;, B,5 ..., Bp_1 is a partitioning of B. Hence, the sequences
b, m}, b,m}s oovs b, (M)}, {a, )}, {a, ()}

partition the positive integers.

10. SPECTRUM TRIANGLES
Let x be irrational and greater than 1 and let [Z} denote [nx] - [nk] -

[(n = k)x] for integers n and k with 0 < k < n. It now follows from (6) that
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[Z] is always in {0, 1}. The fact that [g] =0 = [Z] and the symmetry prop-

erty [Z] = [n ? k] are obvious. Part (c) of the following result implies

other symmetries for certain finite subtriangles of the infinite triangle of

values of [Z].

Theorem 6: Let (a, b, ¢, d) be a Farey quadruple for z. Then:

(a) [2 =1 for 0 < k < b.

(b) [;{Z 0 for 0 < k < d.

(c) [d_i+t}=[i]for0§tisid.

Proof: Parts (a) and (b) are a restatement of Lemma 4. For (c) we use Lem-
ma 4(b), or the present part (b), to see that

[de]l = [(s = B)x] + [(d - 8 + B)x] = [sx] + [(d - 8)x].
Hence [(d - s + t)x] - [(d - s)x] = [sx] - [(s - t)x], and so

1]

[d—i+t]=[(d-s+t)x]—[tx]—[(d—s)x]

[ea] - [tal - [(s - ta] = 3]
as desired.
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