RECURSIVE, SPECTRAL, AND SELF-GENERATING SEQUENCES

V. E. HOGGATT, JR.
San Jose State University, San Jose, CA 95192
and
A. P. HILLMAN
University of New Mexico, Albuquerque, NM 87131

Let p be a fixed integer greater than 1 and define u_{n} for all integers n by

$$
u_{0}=0, u_{1}=1, u_{n+2}=p u_{n+1}+u_{n} .
$$

Then u_{1}, u_{2}, \ldots is an increasing sequence of integers with $u_{1}=1$ and hence a function $\sigma(n)$ is well defined for all n in $N=\{0,1,2, \ldots\}$ by

$$
\begin{equation*}
\sigma(0)=0, \sigma(n)=u_{j+1}+\sigma\left(n-u_{j}\right) \text { for } u_{j} \leq n<u_{j+1} \tag{2}
\end{equation*}
$$

Let $s=\left(p+\sqrt{\left.p^{2}+4\right)} / 2\right.$ and $S_{n}=[n s]$, where $[x]$ denotes the greatest integer in x 。

It is shown below that the spectral sequence $\left\{S_{n}\right\}$ and the shift function $\sigma(n)$ are related by the equation

$$
\begin{equation*}
S_{n}=u_{2}+\sigma(n-1) \tag{3}
\end{equation*}
$$

and that $\left\{S_{n}\right\}$ has the self-generating property that

$$
S_{n+1}-S_{n}=\left\{\begin{array}{l}
p \text { if } n \text { is not in } A=\left\{S_{1}, S_{2}, S_{3}, \ldots\right\} \tag{4}\\
p+1 \text { if } n \text { is in } A .
\end{array}\right.
$$

Also investigated are representations of positive integers in terms of $\left\{u_{n}\right\}$, partitions of $Z^{+}=\{1,2, \ldots\}$ into several sequences related to $\sigma(n)$ or S_{n}, the function counting the number of integers in $A \cap\{1,2, \ldots, n\}$, and properties of "triangles" of entries $\left[\begin{array}{l}n \\ k\end{array}\right]$ defined, for certain fixed x, by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=[n x]-[k x]-[(n-k) x] \text { for } k=0,1, \ldots, n .
$$

Most of the results presented here are analogous to those given in the authors' paper [4] in which the role of the present u_{n} is played by h_{n} satisfying

$$
h_{i}=2^{i-1} \text { for } 1 \leq i \leq d, h_{n+d}+h_{n}=h_{n+1}+\cdots+h_{n+d-1}
$$

The Fibonacci numbers F_{n+1} are the case of the h_{n} with $d=2$. The Fibonacci numbers could also be dealt with here by allowing p to equal 1 ; then the sequence u_{1}, u_{2}, \ldots must be replaced by u_{2}, u_{3}, \ldots in defining $\sigma(n)$.

For a bibliography on spectra of numbers, see [3].

1. PROPERTIES OF u_{n}

Here we state the properties of the u_{n} used below. Proofs are omitted since they are well known or easily derived, or both. Let $r_{n}=u_{n+1} / u_{n}$ for n in Z^{+}.

Lemma 1:
(a) For every k in Z^{+}, there is exactly one j in Z^{+}with $u_{j} \leq k<u_{j+1}$.
(b) $r_{1}<r_{3}<r_{5}<\ldots<s<\cdots<r_{6}<r_{4}<r_{2}$.
(c) $u_{n+1}^{2}-u_{n} u_{n+2}=(-1)^{n}$ for all n in Z.
(d) $r_{n}-r_{n+1}=(-1)^{n} /\left(u_{n} u_{n+1}\right)$ for n in Z^{+}.
(e) gcd $\left(u_{n}, u_{n+1}\right)=1$ for all n in 2 .
(f) $u_{2 n}=p\left(u_{2 n-1}+u_{2 n-3}+\cdots+u_{1}\right)$ for n in Z^{+}.
(g) $u_{2 n-1}=p\left(u_{2 n-2}+u_{2 n-4}+\cdots+u_{2}\right)+u_{1}$ for n in Z^{+}.

2. RATIONAL APPROXIMATION

Let x be a positive irrational number. Then, we define a Farey quadru$p l e$ for x to be an ordered quadruple (α, b, c, d) of positive integers, such that $b c-a d=1$ and $a / b<x<c / d$.

The following result slightly extends some material from the theory of Farey sequences. (See [5] for background.)
Lemma 2: Let (α, b, c, d) be a Farey quadruple for x and let k be a positive integer less than $b+d$. Then:
(a) There is no integer h such that $a / b<\hbar / k<c / d$.
(b) $[k x]=[k a / b]$.
(c) If $d \nmid k,[k x]=[k c / d]$.
(d) If $k=d e$ with e in $\{1,2, \ldots, b-1\},[k x]=[k c / d]-1$.

The proofs are left to the reader.
We note that parts (b) and (c) of Lemma 1 tell us that

$$
\left(u_{2 m+2}, u_{2 m+1}, u_{2 m+1}, u_{2 m}\right) \text { and }\left(u_{2 m}, u_{2 m-1}, u_{2 m+1}, u_{2 m}\right)
$$

are Farey quadruples for s whenever m is a positive integer. This is extended in the following result.
Lemma 3: Let $p \varepsilon\{2,3, \ldots\}, s=\left(p+\sqrt{\left.p^{2}+4\right)} / 2, u\right.$ be as in (1), and $m \varepsilon$ Z^{+}. Then each of

$$
\begin{gathered}
(p, 1,1+k p, k) \text { for } k=1,2, \ldots, p ; \\
\left(u_{2 m}+k u_{2 m+1}, u_{2 m-1}+k u_{2 m}, u_{2 m+1}, u_{2 m}\right) \text { for } k=0,1, \ldots, p ; \\
\left(u_{2 m+2}, u_{2 m+1}, u_{2 m+1}+k u_{2 m+2}, u_{2 m}+k u_{2 m+1}\right) \text { for } k=0,1, \ldots, p ;
\end{gathered}
$$

is a Farey quadruple for s.
Proof: Let (a, b, c, d) represent one of these quadruples. The property

$$
b c-a d=1
$$

is easily verified using Lemma 1 (c). The property

$$
a / b<s<c / d
$$

can be shown using Lemma $1(b)$ and the fact that

$$
\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}
$$

whenever b and d are positive and $a / b<c / d$.

3. SPECTRA

Let $[x]$ denote the greatest integer in x, that is, the integer such that $[x] \leq x<[x]+1$. The sequence $[x],[2 x],[3 x], \ldots$ is called the spectrum
of x. It is a well-known result [1] that if y is an irrational number greater than 1 and $(1 / x)+(1 / y)=1$ then the spectra $\{[n x]\}$ and $\{[n y]\}$ partition the positive integers Z^{+}.

Let p be in $\{2,3,4, \ldots\}, s=\left(p+\sqrt{p^{2}+4}\right) / 2, x=s-p+1$, and $y=$ $s+1$. Also let $S_{n}=[n s], X_{n}=[n x]$, and $Y_{n}=[n y]$. It is easily seen that y is irrational, $y>1$, and $(1 / x)+(1 / y)=1$; hence the spectra $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ partition Z^{+}. It is also clear that $Y_{n}=X_{n}+n p$ and that each of X_{n} and Y_{n} is an increasing function of n. It follows that $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ may be selfgenerated using the following algorithm.
$X_{1}=1, Y_{1}=1+p, X_{k}$ for $k>1$ is the smallest positive integer

$$
\begin{equation*}
\text { not in the set }\left\{X_{1}, Y_{1}, X_{2}, Y_{2}, \ldots, X_{k-1}, Y_{k-1}\right\} \text {, and } Y_{k}=X_{k}+k p \text {. } \tag{5}
\end{equation*}
$$

Then $\left\{S_{n}\right\}$ is easily obtained from $S_{n}=Y_{n}-n=X_{n}+n(p-1)$. It is shown below that $\left\{S_{n}\right\}$ can be self-generated from the initial condition $S_{1}=p$ and the difference property (4) above.

The following result gives symmetry properties of finite segments [x], ..., [ex] of a spectrum for the cases in which e is the b or d of a Farey quadruple (a, b, c, d) for x.
Lemma 4: Let (α, b, c, d) be a Farey quadruple for x. Then:
(a) $[b x]=[k x]+[(b-k) x]+1$ for $k=1,2, \ldots, b-1$;
(b) $[d x]=[k x]+[(d-k) x]$ for $k=0,1, \ldots, d$.

Proof of (a): We have $[b x]=a$ from Lemma 2(b). Let $0<k<b, j=b-k$, $h=[k x]$, and $i=[j x]$. Since x is irrational, $h<k x$ and so $h / k<x$. This, $x<c / d, k<b$, and Lemma 2(a) imply that $h / k<a / b$. Similarly, $i / j<a / b$. Since $(h+i) /(k+j)$ is in the closed interval with endpoints h / k and i / j, we have $(h+i) /(k+j)<a / b$. As $k+j=b$, this means that $h+i<a$ or $[k x]$ $+[j x]<[b x]$. Then the desired result follows from the fact that, for all real y and z,

$$
\begin{equation*}
[y+z]-[y]-[z] \varepsilon\{0,1\} . \tag{6}
\end{equation*}
$$

Proof of (b): Lemma 2(d) tells us that $[d x]=c-1$. We only need consider the k with $0<k<d$. Let $j=d-k,[k x]=h$, and $[j x]=i$. Then $h+1>k x$ and so $(h+1) / k>x$. This, $x>\alpha / b, k<\alpha$, and Lemma $2(a)$ then imply that $(h+1) / k>c / d . \quad$ Similarly, $(i+1) / j>c / d$, and hence $(h+1+i+1) /(k+$ $j)>c / d$. As $k+j=d$, one has $h+i+2>c$, which implies

$$
[k x]+[(d-k) x]+1>[d x]
$$

Again, the desired result follows from (6).

4. THE SHIFT PROPERTY

When convenient, $S_{n}=[n s]$ will also be denoted by $S(n)$. Also, we recall that $\sigma(n)$ is defined in (2) and u_{j} is defined in (1).
Theorem 1: If $u_{j}<n<u_{j}+u_{j+1}$ and $j \varepsilon Z^{+}$, then $S(n)=u_{j+1}+S\left(n-u_{j}\right)$. Proo6: Let (a, b, c, d) be the Farey quadruple $\left(u_{2 m}, u_{2 m-1}, u_{2 m+1}, u_{2 m}\right)$ for s. Then Lemma 2 (b) tells us that $S(n)=[n s]=\left[n r_{2 m-1}\right]$ for $0<n<u_{2 m-1}+$
$u_{2 m} \cdot$ Hence
$(7) S(n)=\left[n u_{2 m} / u_{2 m-1}\right]=\left[\frac{u_{2 m-1} u_{2 m}+\left(n-u_{2 m-1}\right) u_{2 m}}{u_{2 m-1}}\right]=u_{2 m}+S\left(n-u_{2 m-1}\right)$
for $u_{2 m-1}<n<u_{2 m-1}+u_{2 m}$.

Next we use the Farey quadruple $\left(u_{2 m+2}, u_{2 m+1}, u_{2 m+1}, u_{2 m}\right)$ for s and we find, from Lemma 2(c) and (d), that

$$
\begin{gathered}
S(n)=\left[n r_{2 m}\right] \text { if } 0<n<u_{2 m}+u_{2 m+1} \text { and } u_{2 m} \nmid n, \\
S(n)=\left[n r_{2 m}\right]-1 \text { if } n=k u_{2 m} \text { with } k \text { in }\left\{1,2, \ldots, u_{2 m+1}-1\right\} .
\end{gathered}
$$

Using these facts, one can verify that

$$
\begin{equation*}
S(n)=u_{2 m+1}+S\left(n-u_{2 m}\right) \text { for } u_{2 m}<n<u_{2 m}+u_{2 m+1} \tag{8}
\end{equation*}
$$

The desired result follows from (7) when j is odd and from (8) when j is even. Theorem 2: $S_{n}=u_{2}+\sigma(n-1)$ for n in Z^{+}.
Proo f: Since $S_{1}=p=u_{2}$ and $\sigma(0)=0$, the result holds for $n=1$. Then a strong induction establishes it for all positive integers n using the consequence

$$
S(n)=u_{j+1}+S\left(n-u_{j}\right) \text { for } u_{j}<n \leq u_{j+1}
$$

of Theorem 1 and the consequence

$$
\sigma(n-1)=u_{j+1}+\sigma\left(n-1-u_{j}\right) \text { for } u_{j}<n \leq u_{j+1}
$$

of the definition (2).

5. SEQUENCES OF COEFFICIENTS

Let V be the set of all sequences $E=\left[e_{1}, e_{2}, \ldots\right]$ with each e_{i} in $\{0$, $1, \ldots, p\}$, with an i_{0} such that $e_{i}=0$ for $i>i_{0}$, and with $e_{i}=p$ implying that both $i>1$ and $e_{i-1}=0$. For such E, the sum

$$
e_{1} u_{n+1}+e_{2} u_{n+2}+e_{3} u_{n+3}+\cdots
$$

is actually a finite sum which we denote by $E \cdot U_{n}$. Also, we let $E \cdot U$ stand for $E \cdot U_{0}$.
Lemma 4: If E and E^{\prime} are in V and $E \cdot U=E^{\prime} \cdot U$, then $E=E^{\prime}$.
This is shown using parts (f) and (g) of Lemma 1.
Theorem 3: The sequences of V form a sequence $E_{0}, E_{1}, E_{2}, \ldots$ such that

$$
E_{m} \cdot U=m .
$$

Proof: The only E in V with $E \cdot U=0$ is [0,0, ...], which we denote by E_{0}. Now we assume that $k>0$, and that there is a unique E_{m} in V with $E_{m} \cdot U=m$ for $m=0,1, \ldots, k-1$. By Lemma $1(a), u_{j} \leq k<u_{j+1}$ for some j in Z^{+}. Let $h=k-u_{j}$; then we can let $\left[e_{h_{1}}, e_{h_{2}}, \ldots\right]$ be the unique E_{h} in V with $E_{h} \cdot U$ $=h$. Then let $e_{k j}=1+e_{h j}, e_{k i}=e_{h i}$ for $i \neq j$, and $E_{k}=\left[e_{k_{1}}, e_{k_{2}}, \ldots\right]$. Since

$$
k<u_{j+1}=p u_{j}+u_{j-1}<(p+1) u_{j},
$$

one sees that $e_{k j} \leq p$ and that if $e_{k j}=p$, then $j>1$ and $e_{k, j-1}=0$. Thus, E_{k} is in V. Clearly,

$$
E_{k} \cdot U=E_{h} \cdot U+u_{j}=h+u_{j}=k
$$

Finally, there is no other E in V with $E \cdot U=k$ by Lemma 4.
The case with $p=2$ of Theorem 3 was shown in [2].

6. PARTITIONING V

We now partition V into subsets V_{1}, V_{2}, V_{3} and use these subsets to indicate the relationship of E_{m+1} to E_{m}. Let $E \stackrel{3}{=}\left[e_{1}, e_{2}, \ldots\right]$ be in V; then, E is in V_{1} if $e_{1}=p-1, E$ is in V_{2}^{\prime} if $e_{1}=0$ and $e_{2}=p$, and E is in V_{3} if $e_{1}<p-1$ and $e_{2}<p$. Since $e_{1}>0$ implies $e_{2}<p$, one sees that each E of V is in one and only one of the V.
Lemma 5: Let $E_{m}=\left[e_{1}, e_{2}, \ldots\right]$ and $E_{m+1}=\left[f_{1}, f_{2}, \ldots\right]$. Then:
(a) If E_{m} is in V_{1}, let j be the smallest positive integer such that $e_{2 j+1}<p ;$ then $f_{i}=0$ for $i<2 j, f_{2 j}=1+e_{2 j}$, and $f_{i}=e_{i}$ for $i>2 j$.
(b) If E_{m} is in V_{2}, let h be the smallest positive integer such that $e_{2 h}<p$; then $f_{i}=0$ for $1 \leq i \leq 2 h-2, f_{2 h-1}=1+e_{2 h-1}$, and $f_{i}=e_{i}$ for $i \geq 2 h$.
(c) If E_{m} is in $V_{3}, f_{1}=1+e_{1}$ and $f_{i}=e_{i}$ for $i>1$.

Proof: If we let $F=\left[f_{1}, f_{2}, \ldots\right]$ with the f_{i} as in (a), (b), and (c), it is easily seen that F is in V and $F \cdot U=1+E_{m} \cdot U=1+m$. This and Theorem 3 establish the present result.
Lemma 6: Let $\Delta_{n}(m)=E_{m+1} \cdot U_{n}-E_{m} \cdot U_{n}$. Then:
(a) $\Delta_{n}(m)=u_{n}+u_{n+1}$ if E_{m} is in V_{1}.
(b) $\Delta_{n}(m)=u_{n+1}$ if E_{m} is in V_{2} or V_{3}.

Proof: These statements are easily verified using the parts of Lemma 5.

7. POWERS OF σ

Let $E_{m}=\left[e_{m 1}, e_{m 2}, \ldots\right]$ and let h be the largest i with $e_{m i} \neq 0$, then one can use the definition of σ in (2) to show that

$$
\sigma(m)=\sigma\left(e_{m 1} u_{1}+\cdots+e_{m h} u_{h}\right)=e_{m 1} u_{2}+\cdots+e_{m h} u_{h+1}=E_{m} \cdot U_{1} .
$$

Hence, there is no contradiction in defining σ^{n} for all integers n to be the function from N to Z given by

$$
\begin{equation*}
\sigma^{n}(m)=E_{m} \cdot U_{n}=e_{m 1} u_{n+1}+e_{m 2} u_{n+2}+\cdots . \tag{9}
\end{equation*}
$$

Also let a_{n} be the function from Z^{+}to Z defined by

$$
\begin{equation*}
a_{n}(k)=u_{n+1}+\sigma^{n}(k-1) \tag{10}
\end{equation*}
$$

We note that $\alpha_{0}(k)=k$, that $\alpha_{1}(k)=S_{k}$, and that, for fixed k, the $\alpha_{n}(k)$ satisfy the same recurrence as the u_{n}, i.e.,

$$
a_{n+2}(k)=p a_{n+1}(k)+a_{n}(k)
$$

We also let A_{n} be the image set of α_{n}, i.e.,

$$
A_{n}=\left\{a_{n}(k): k \in Z^{+}\right\}
$$

Lemma 7: For n in $\{1,2\}, A_{n}=\left\{i+1: E_{i} \varepsilon V_{n}\right\}$.
Proof: Using (10) and (9), one sees that

$$
\begin{equation*}
a_{n}(m+1)=\left(1+e_{m 1}\right) u_{n+1}+e_{m 2} u_{n+2}+e_{m 3} u_{n+3}+\ldots \tag{11}
\end{equation*}
$$

As m takes on all values in $N, F_{m}=\left[p-1, e_{m 1}, e_{m 2}, \ldots\right]$ ranges through all
the E_{j} in V_{1} and $G_{m}=\left[0, p, e_{m 1}, e_{m 2}, \ldots\right]$ ranges through all the E_{h} in V_{2}. It follows from (11), Lemma 5, and the recursion in (1) that if $F_{m}=E_{j}$ then

$$
j+1=E_{j+1} \cdot U=\alpha_{1}(m+1)
$$

and, similarly, that if $G_{m}=E_{h}$ then

$$
h+1=E_{h+1} \cdot U=\alpha_{2}(m+1)
$$

These facts establish the lemma.

8. SELF-GENERATING SEQUENCES

Clearly, $a_{n}(1)=u_{n+1}$. This, and the following result, provide an easy self-generating rule for obtaining the sequence $\left\{\alpha_{1}(k)\right\}$ and a similar easy rule for using $\left\{\alpha_{1}(k)\right\}$ to obtain any $\left\{a_{n}(k)\right\}$.
Theorem 4: For n in Z and j in $Z^{+}, a_{n}(j+1)-a_{n}(j)$ equals $u_{n}+u_{n+1}$ if j is in $A_{1}=\left\{a_{1}(k): k \in \mathbb{Z}^{+}\right\}$and equals u_{n+1} otherwise.

Proof: Lemma 7 tells us that $A_{1}=\left\{j: E_{j-1} \varepsilon V_{1}\right\}$. Also,

$$
a_{n}(j+1)-a_{n}(j)=\sigma^{n}(j)-\sigma^{n}(j-1)=E_{j} \cdot U_{n}-E_{j-1} \cdot U_{n}
$$

Hence, the desired result follows from Lemma 6.
Theorem 5: The number of integers in $A_{1} \cap\{1,2, \ldots, m\}$ is $a_{-1}(m+1)$.
Proof: Let $\Delta_{-1}(i)=a_{-1}(i+1)-a_{-1}(i)$. C1early,

$$
\begin{equation*}
a_{-1}(m+1)=a_{-1}(1)+\Delta_{-1}(1)+\Delta_{-1}(2)+\cdots+\Delta_{-1}(m) \tag{12}
\end{equation*}
$$

Now $a_{-1}(1)=u_{0}+\sigma^{-1}(0)=0+0=0$. Also, Theorem 4 tells us that $\Delta_{-1}(i)=$ $u_{0}=0$ when i is not in A_{1} and $\Delta_{-1}(i)=u_{0}+u_{-1}=1$ when i is in A_{1}. Thus, the sum on the right side of (12) is the number of i that are in both $\{1,2$, $\ldots, m\}$ and A_{1}, as desired.

9. PARTITIONING Z^{+}

We saw in Lemma 7 that $A_{n}=\left\{i+1: E_{i} \varepsilon V_{n}\right\}$ for n in $\{1,2\}$. Let $B=$ $\left\{j+1: E_{j} \varepsilon V_{3}\right\}$. Since V_{1}, V_{2}, V_{3} is a partitioning of $V=\left\{E_{0}, E_{1}, \ldots\right\}$, it follows that A_{1}, A_{2}, B is a partitioning of $Z^{+}=\{1,2, \ldots\}$.

For $k=1,2, \ldots, p-1$, we let

$$
b_{k}(n)=\alpha_{1}(n)+k-p=k+\sigma(n-1)
$$

and 1 et

$$
B_{k}=\left\{b_{k}(n): n \in Z^{+}\right\} .
$$

It is easily seen that

$$
B_{k}=\left\{m: e_{m 1}=k, e_{m_{2}}<p\right\} \text { for } 1 \leq k<p
$$

and that $B_{1}, B_{2}, \ldots, B_{p-1}$ is a partitioning of B. Hence, the sequences

$$
\left\{b_{1}(n)\right\},\left\{b_{2}(n)\right\}, \ldots,\left\{b_{p-1}(n)\right\},\left\{\alpha_{1}(n)\right\},\left\{\alpha_{2}(n)\right\}
$$

partition the positive integers.

10. SPECTRUM TRIANGLES

Let x be irrational and greater than 1 and let $\left[\begin{array}{l}n \\ k\end{array}\right]$ denote $[n x]-[n k]-$ $[(n-k) x]$ for integers n and k with $0 \leq k \leq n$. It now follows from (6) that
$\left[\begin{array}{l}n \\ k\end{array}\right]$ is always in $\{0,1\}$ ．The fact that $\left[\begin{array}{l}n \\ 0\end{array}\right]=0=\left[\begin{array}{l}n \\ n\end{array}\right]$ and the symmetry prop－ erty $\left[\begin{array}{l}n \\ k\end{array}\right]=\left[\begin{array}{c}n \\ n-k\end{array}\right]$ are obvious．Part（c）of the following result implies other symmetries for certain finite subtriangles of the infinite triangle of values of $\left[\begin{array}{l}n \\ k\end{array}\right]$ ．
Theorem 6：Let（ a, b, c, d ）be a Farey quadruple for x ．Then：
（a）$\left[\begin{array}{l}b \\ k\end{array}\right]=1$ for $0<k<b$.
（b）$\left[\begin{array}{l}d \\ k\end{array}\right]=0$ for $0 \leq k \leq d$.
（c）$\left[\begin{array}{c}d-s+t \\ t\end{array}\right]=\left[\begin{array}{l}s \\ t\end{array}\right]$ for $0 \leq t \leq s \leq d$ ．
Proot：Parts（a）and（b）are a restatement of Lemma 4．For（c）we use Lem－ ma $4(\mathrm{~b})$ ，or the present part（b），to see that

$$
[d x]=[(s-t) x]+[(d-s+t) x]=[s x]+[(d-s) x]
$$

Hence $[(d-s+t) x]-[(d-s) x]=[s x]-[(s-t) x]$ ，and so

$$
\begin{aligned}
{\left[\begin{array}{c}
d-s+t \\
t
\end{array}\right] } & =[(d-s+t) x]-[t x]-[(d-s) x] \\
& =[s x]-[t x]-[(s-t) x]=\left[\begin{array}{l}
s \\
t
\end{array}\right]
\end{aligned}
$$

as desired．

REFERENCES

1．S．Beatty．＂Problem 3177．＂American Math．Monthly 33 （1926）：159，and （Solutions），ibid． 34 （1927）：159．
2．L．Carlitz，Richard Scoville，\＆Verner E．Hoggatt，Jr．＂Pellian Repre－ sentations．＂The Fibonacci Quarterly 10 （1972）：449－488．
3．Ronald L．Graham，Shen Lin，\＆Chio－Shih Lin．＂Spectra of Numbers．＂Math． Magazine 51（1978）：174－176．
4．V．E．Hoggatt，Jr．，\＆A．P．Hillman．＂Nearly Linear Functions．＂The Fibonacei Quarterly 17 （1979）：84－89．
5．Ivan Nivan \＆Herbert S．Zuckerman．An Introduction to the Theory of Numbers，pp．128－133．New York：John Wiley \＆Sons，Inc．， 1960.

