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1. INTRODUCTION 

If p is a prime5 let Zp denote the integers modulo p and Z£ the set of 
nonzero elements of Zp« It is well known that every function from Zp x Zp 
into Zp can be represented as a polynomial of degree <p in each variable. We 
say that a polynomial f(x1$ x2) with coefficients in Zp is a local permuta-
tion polynomial over Zp if f(xls a) and /(£>, x2) are permutations in xx and 
x2 for all a9 b e Zp. 

In Section 29 we obtain a set of necessary and sufficient conditions on 
the coefficients of a polynomial f(xls x2) over Zp9 p an odd prime, in order 
that f(x13 x2) be a local permutation polynomial. Clearly the number of lo-
cal permutation polynomials over Zp equals the number of Latin squares of 
order p. Thuss the number of Latin squares of order p equals the number of 
sets of coefficients satisfying the set of conditions given in Section 2. 
Finally9 in Section 3S we use our theory to show that there are twelve local 
permutation polynomials over Z which are given by 

f(xis x2) = a1Qx1 + aQ1x2 + aQQ 

where a10 = 1 or 2S a01 = 1 or 2S and a00 = 0S 13 or 2* 

2, A NECESSARY AND SUFFICIENT CONDITION 

Clearly, the only local permutation polynomials over Z2 are x± + x2 and 
x± + x2 + 1 so that we may assume p to be an odd prime. We will make use of 
the following well-known formula 

P-i ( 0 if k $ 0 (mod p - 1), 
(2.1) £j* = I 

m = i (-1 If & = 0 (mod p - 1). 

Suppose 
P-i p-i 

w = 0 n = 0 

is a local permutation polynomial. Let /(£, j) = /c^ for 0 _< is i <_p - 1. 
Since no permutation over Zp can have degree p - 1, we have 

(CI) 

ao,P-i = °* 
p-i 

I>X,P-i = 0, fe = 1, .. 
WJ = 1 

Suppose i = 0 so that 

/ ( O , j ) = a 0 0 + a 0 1 j + ••• + a 0 s p „ 1 j p " " 1 = /cQj.. 

Let k[. = kQj- - kQQ fo r j = 1, . . . , p - 1. The s e t {kr
Qj. } = Zp and5 moreover , 

a01J + a 0 2 j 2 + ••• + aQiV_1f"1 = fc^. for j = 1, . .., p - 1. 

Raising each of the p - 1 equations to the kth power, summing by columns and 
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u s i n g ( 2 . 1 ) 9 we o b t a i n 

<C2) E - — — t rs" • 
^ 0 1 * e e ° ^ 0 , p - l ' 

0 , p - 1 

0 if fc = 25 . .., p - 2 

1 if k = p - 1 

where the sum is over all (p - 1)-tuples (i01s ..., iQ -:L) with 

(a) 0 < iQ1, .... ̂ p ^ < fe, 

(b) i01 + -.. + io.p.! = ^ 

(c) i 0 1 + 2 i 0 2 + °«* + (p - i K 0 s P - i E ° ( m o d P " D -

I f i > 0 i s f i x e d , c o n s i d e r 
P - i p - i 

(2 .2 ) / ( £ , j ) - kiQ = ] T ^ <zmnWW = ^ . » J = 1, . . . , p ~ 1, 
m=0 n = 1 

so that ik'^j} = Z*. For each /c = 2, ..., p - 1 raise each of the p - 1 equa-
tions in (2.2) to the kth power, sum by columns9 and use (2.1) to obtain 

P-iP-i kla^;ilm (0 if k = 25 . .., p - 2 P-ip-i k\a™n
ni m ( 

(C3) E n n -T-T— = \ 1 if k = p - 1 

for each £ = 1, . .., p - 1, where the sum is over all (p2 - p)-tuples 

A ^ o i 3 •••» ^mn» • • • s ^p-l, p — 1 ' 

which satisfy 

(d) 0 < i m n < ks 

P - i p - i 

(e) E E ^ = /Cs 
m=0 n - l 
p - 1 p - 1 p - 1 

(f> XXl + 2X^2 + ••• + (P " D^^.P-1 E ° ( m ° d P " 1)e 
m = 0 m = 0 777 = 0 

A further word of explanation about the sum in (C3) may be helpful at 
this time. Conditions (d) and (e) arise because of the multinomial coeffi-
cients , while (f) determines which terms appear in the given condition. 
Moreover, the Zm appearing in (C3) is understood to mean the sum, counting 
multiplicities, of all the first subscripts of the amn*s which appear in a 
given term. Finally, we note that condition (C3) actually involves a total 
of (p - 1)(p - 2) conditions. 

If we now fix j and proceed as above, we obtain another set of necessary 
conditions. For brevity, we simply state these as 

a
P-i5 0 = °* 

(CIO I p.x 
X ^ s - i ^ = 0, & = 1, . . . . P - 1 . 
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When j = 0, we have 

(C2') 
1 I 
^10 • 

-a'2'10 ... a Z p ~ l ' ° !uio p-i, o 

0 if fc = 2 9 ..., p 

1 if fc = p - 1 "P - I , o • 

where the sum is over all (p - 1)-tuples (i10» •••> ^p-i Q ) with 

(af) 0 < i 1 Q , ..., , p „ l j 0 

(bf) i10 + 

(cf) i10 + 2i2Q + ... + (p - l)ip.1>0 = 0 (mod p - 1). 

+ ^p-1, 0 = ^ 9 

When j = 1, 

*- PAX P^ fc!<0'En 

(C30 x n n —f-— 

15 we obtain 

0 if k = 2, 

1 if fc = p - 1 

. 9 1>j) , .̂ •p-l,p-l ) that where the sum is over all (p2 - p)-tuples (i10, 
satisfy 

( d ' ) 0 < i m n < f c 5 

p - i p - i 

m = 1 n = 0 
p - 1 p - 1 p - 1 

( f f > £ ^ l n + 2 I ^ 2 n + • • • + (P - D ^ V l . n E ° ( m ° d P " 1 } ' 
m=0 n = 0 n = 0 

We now proceed to show that if the coefficients of a polynomial f(x19 x2) 
satisfy the above conditions, then f(x19 x2) is a local permutation polyno-
mial. Suppose the coefficients of f(x19 x2) satisfy (CI), (C2), (C3), (CI'), 
(C2f), and (C3f). For each fixed i, let t ^ = f{i9 j) - f(i9 0) for j = 1, 
. .., p - 1. The above conditions imply that for fixed i = 0, 1, ..., p - 1 
the £•. satisfy 

(2.3) 
p-i 0 if fc = 1, . . . , p - 2, 

-1 if k = p - 1. 

Let 7 be the matrix 

^ii ••• ^itp-i 

tp~2 ... *r2 

-z-1 %, p - 1 

Using (2.3), we see that 
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det(72) = det(F)det(7) = det 

-1 0 
0 0 
0 0 

0 
0 
1 

0 
-1 

0 
±1. 

0 -1 . .. 0 Oj 

Since det(7) is the Van der Monde determinant, we have, for fixed i, 

det(7) = II <tij ~ tik) * 0 

so that the t^ for j = 1, S9e, p - 1 are distinct. Hence* 

/(£, 0) and /(i, j) = t^. + /(£, 0) for j = 1, ..., p - 1 

constitute all of Zp, 
A similar argument shows that if for each fixed j, 

sij = f&9 0) ~ /(0, j) for i = 1, . . . , p - 1, 
then 

/(0, J) and /(i, j) = sid + /(0, j) for £ = 1, ..., p - 1 

run through the elements of Zpa Hence, we have 

Tk&QfiQjrn 1» If f(xl9 x2) is a polynomial over Zps p an odd prime, then / is 
a local permutation polynomial over Zp if and only if the coefficients of / 
satisfy (CI), (C2) , (C3) , (Clf), (C2f)s and (C3f). 

CoKolZcUtij 1: The number of Latin squares of order p an odd prime equals the 
number of sets of coefficients {ccmn} satisfying the above conditions. 

ap-i,v-i ° 9 We note from condition (CI) that &0sp-i = ai v-i ~ ° ' ' 
since the determinant of the coefficient matrix in (CI) is the Van der Monde 
determinant. Similarly, (CIr) implies that ^ p „ l s 0 ~

 a
p-± 1 = ••• = a

p_ l sp_ x 

= 0. We further note that we have a total of 2p(p - 1) conditions so that, 
in generals the conditions are not independent, 

3* ILLUSTRATIONS 

As a simple illustration of the above theory, we determine all local 
permutation polynomials over Z3« If 

/<*!• *2> = E iamn^1x2 
m = 0 n = 0 

then the set of necessary and sufficient conditions becomes 

(2-4> 

(2-5) a\, + a*, = a2
 n + a*n = 1, 

(2.6) 

(2.7) at, + at, + an,a,, = at „ + at, + a,„a,, = 1 

a21 = a20 - 0, 

<i + ali + 2 aoi an = aio + aii + 2 aioan = 2> 

aoi + aii + a oi a n = aio + aii + a io an 
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Using (2.4) and (2.5)9 we see that a01 = 1 or 2 and a10 = 1 or 2. From 
(2.6) and (2.7), we have a11 = 0. Since a00 is arbitrary, we see that there 
are a total of twelve local permutation polynomials over Z3, given by 

where a10 = 1 or 2, a01 = 1 or 2, and aQQ = 09 1, or 2. 

GENERALIZED CYCLOTOMIC POLYNOMIALS^ FIBONACCI CYCLOTOMIC 
POLYNOMIALS., AND LUCAS CYCLOTOMIC POLYNOMIALS* 

CLARK KiMBERLSNG 
University of Evansville, Evansville, IN 47702 

U INTRODUCTION AND MAIN THEOREM 

In [6] s Hoggatt and Long ask what polynomials in I[x ] are divisors of 
the Fibonacci polynomials9 which are defined by the recursion 

FQ(x) = 0, F±(x) = 1, Fn(x) = xFnm±(x) + Fn^{x) for n >_ 2e 
In this paper, we answer this question in terms of cyclotomic polynomials. 
We prove that each Fibonacci polynomial Fn (x) , for n _> 2., has one and only 
one irreducible factor which is not a factor of any Fk (x) for any positive k 
less than n. We call this irreducible factor the nth Fibonacci cyclotomic 
polynomial and denote it ^fn(x) . 

The method applied to Fn* s to produce 9V s applies naturally to the more 
general polynomials Zn(xs y9 z) which were introduced in [7] and are defined 
just below. Accordingly,, in Section 2S we shall apply the method at this more 
general level rather than directly to the Fn

fs. The polynomials Cn(x9 y3 z) 
so obtained from the ln(x9 y9 s)fs we call generalized cyclotomic -polynomials, 
Special cases of the C^s are the ordinary cyclotomic polynomials Cn(x9 1, 0), 
the Fibonacci cyclotomic polynomials 9^ already mentioned, and a sequence 

&£„(*) = Cn(x9 0, 1) 

which we call the Lucas cyclotomic polynomials. Section 3 is devoted to the 
^n

fs and Section 4 to the S£Mfs. In Sections 39 49 and 59 we determine all the 
irreducible factors of the Fibonacci polynomials9 the modified Lucas polyno-
mials defined in [7] as ln(x9 0, 1)9 and the Lucas polynomials. 

In Section 69 we transform the generalized Fibonacci and Lucas polyno-
mials into sequences Un(x9 z) and Vn (xs z) having the same divisibility prop-
erties as the Fn*s and Ln*s9 respectively. The coefficients of these poly-
nomials are all binomial coefficients, in accord with the Identity 

zlln(x5 z) + Vn(x9 z) = (x + z)n . 

The polynomials &n(x5 y9 z) may be defined as follows^ 

Ln(x9 z) - Ln(ys z) 
in(x9 y9z)= — — for n >_ 0S 
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