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We may note in passing that the row sum in Figure lb is given by 

<3> £ 2-*(n ? J - 3». 
r = 0 

Also9 the right-rising diagonal generates the series 1, 29 5S 12, 29, 
70s ••• given by Rn = 2Rn_1 + Rn_25 and the left-rising diagonal yields 1, 
1, 3, 59 11, 21, „. . given by Ln = Ln_1 + 2Ln_2* Other properties of the 
array may be found by the reader, 
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INTRODUCTION 

We consider sequences (xn) of integers satisfying for all n the recur-
rence relation 

X _,, = X„ + X . . (1) 
n + 1 n n -1 v ' 

The xn are uniquely defined if we prescribe the elements of the "initial 
vector" (x0$ X-L) . On choosing (x0, x±) = (09 1), we obtain the Fibonacci 
numbers xn = Fn 9 while the choise (xQ9 x^ = (2, 1) gives the Lucas numbers 

In [3], V. E. Hoggatt, Jr., and Marjorie Bicknell discuss the following 
conjecture of K* W. Leonard (unpublished). 

CoYljfLCtiXJld 1 • We have the congruence 

Ln = 1 (mod n) 9 (n > 1) (2) 

if and only if n is a prime number. 
Among the many interesting results of [3], we single out the following; 

Tfeeo/iew 1: The "if" part of Conjecture 1 is correct; i.e., 

Lp = 1 (mod p) 9 where p is a prime. (3) 

Tho.Oh.Qm 2: The "only if" part of Conjecture 1 is wrong, as shown by the 
congruence _ f ___. //N 

L705 = 1 (mod 705), (4) 
while 705 = 3 * 5 * 47 is composite. 

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. 
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We are grateful to D. H. Lehmer for an informative letter [4] in which 
he expresses familiarity with these results; also, that composite numbers 
that satisfy (2) are called Fibonacci pseudoprimes, which we abbreviate F. 
Psps. In [3], the authors report, on the basis of computer results, that 
beyond 705 the next F. Psps are 

2465, 2737, 3745, 4181. (5) 

Conjecture 1 was communicated to one of us several years ago by Richard 
S. Field, of Los Angeles. We became aware of the paper [3] only recently. 
Before this, in November 1976, George Logothetis,a graduate student in Com-
puter Science in Madison, using Professor George Collins' SAC 2 program, 
found for us not only the five F. Psps already mentioned, but also two new 
ones: 

5777, 6721, (6) 

He also found that these seven numbers are the only F. Psps that are ^9161. 
In the present paper we do the following: 
1. Present a proof of Theorem 1 that uses from elementary number the-

ory only Euclidfs lemma. 
2. Give a second proof of Theorem 2, and establish 

Thdonm 3: £2^65 =
 l (mod 2 4 6 5) • 

These numerical results are here derived by the matrix approach as de-
scribed in [2, Ch. 11]. In [3, p. 211], Theorem 2 is proved in a few lines 
by showing that the sequence Ln mod 705 has the period 704. Since Lx = 1, 
the relation (4) follows. In §3 we describe this method of periods and show 
that while it proved Theorem 2, it did not work to establish Theorem 3. In 
[4], D. H. Lehmer stated that 

2737 = 7 • 17 • 23 is a Fibonacci pseudoprime, (7) 

and that the method of periods will apply. This we verify. 
3. Show, in §5, that the matrix approach allows us to develop ab ini-

tio some of the basic properties of Fibonacci numbers as presented 
in [1, §10.14], As we assume no previous knowledge of Fibonacci 
numbers, this paper may serve as an introduction to these numbers. 

4. The failure of the "only if" part of Conjecture 1 suggests a search 
for classes of composite numbers n which are not Fibonacci pseudo-
primes. In §6 we state some modest results in this direction which 
suggested the following: 

Conj£cXuA& It If n > 1, then 

Ln ? 1 (mod n 2 ) . (8) 

Again George Logothetis showed (8) to hold for n <, 7611. Some further 
striking results obtained in the course of this computation are described 
at the end of the paper. 

1. A PROOF OF THEOREM 1 

Observe that the Lucas numbers Ln are explicitly given by 

(l + /5 V , (l - /5 V £ _ „ ^ 
n = V 2 / I 2 / n' (1" ^ 

because (l±/5)/2 are the roots of the characteristic equation x2 - x - 1 = 0 
of (1); hence, the right side of (1.1) satisfies (1), while it assumes the 
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same initial values as Ln for n- 0 and n= 1. Now let n = p be a prime > 2. 
Expanding the binomials and cancelling the irrational terms, we find that 

I I - T I W " ' " ' \ P - l)> " '"2 

Applying the binomial expansion of (l+l)p in the numerator of the last 
term, we obtain 

The left side is an integer, while the right side is of the form pa/b9 where 
p does not divide bs and therefore, (p, b) = 1. By Euclidfs lemma, we con-
clude that b divides a, which proves (3). 

2. THE MATRIX APPROACH AND A PROOF OF THEOREM 2 

We replace the relation (1) by the vector recurrence relation 

(Xn \ , (0 l\/^-i\ (2.1) 

to which is it visibly equivalent. Writing 

* - ( ! ! ) • ( 2 - 2> 
and iterating (2.1), we obtain 

\xn + l/ V'l/ 
(2.3) 

This brings to bear on our problem the powerful tool of matrix multiplica-
tion. To prove Theorem 2, it suffices to work modulo 705. We observe that 
(2.3) implies 

( j W \ = A70*!?) (mod 705), (2.4) 

and that we are to determine the matrix A70k (mod 705). This is readily 
done with a hand calculator if we use the binary representation of 704: 

704 = 64 + 128 + 512 = 26 + 27 + 29. (2.5) 

By successively squaring matrices, and working mod 705 throughout, we find 
A2k (mod 705) for k - 1, 2, ..., 9, and, in particular, 

,26 - /142 423\ A27 - /283 141\ ,29 - /424 564\ ( A 7 r v n 

. A = V423 5 6 s M = ll41 4 2 4 > ^ = 1564 283 )> ( m o d 7 0 5 )' 

Multiplying these matrices together, mod 705, we find, by (2.5), that 

A70"=-(H23 565) <•»*"«• 
Now (2.4) shows that 

(J;::)5 (in S ) ( D = ( J ;OMD <-»»•. <»•» 
Therefore, L7Q5 = 1 (mod 705), and Theorem 2 is established. 
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A few remarks on these matrix operations are in order. Observe that A 
is a symmetric matrix, i.e., AT - A. We also know that the product BC of 
two symmetric matrices that commute {BC- CB), is also symmetric. Since any 
two powers Am and An clearly commute, it follows that all powers Am are 
symmetric. This means that in multiplying two powers of A, we need to com-
pute only one of the two elements off the main diagonal. 

The matrix multiplications performed above require the following impor-
tant check against errors. Passing to determinants, from \A\ = -1, we con-
clude that \Am\ = (-1) . Since all the above exponents m are even, we see 
that |^m| = 1, and, of course, \Am\ = 1 (mod 705). The check is to verify 
that after each matrix multiplication, the resulting product M satisfies 

|Af| = 1 (mod 705). 

3. ON THE HOGGATT-BICKNELL PROOF OF THEOREM 2 

In order to make this paper self-sufficient, we establish the known 
lemmas below. Let k be given, k > 1, and let us denote by (Ln9 mod k) the 
sequence (Ln) of Lucas numbers reduced mod k. 

Loynmci 1: The sequence {Ln9 mod k) is periodic. 

Vh-Ool* Clearly, {Ln, mod k) is periodic if and only if for some v and s we 

(xp9 xr + 1) = (xg9 xs + 1) (mod k)9 v < s. 

It follows that there is no periodicity if and only if 

for every pair {r9 s), such that r < s 
we have (xp , xp + 1)i ? (a?a 5 #8 + 1) (mod k) . 

But this is obviously impossible, as there are only k2 distinct pairs (u, v) 
(mod k) available. 

The Hoggatt-Bicknell proof of Theorem 2 is based on the following suf-
ficient conditions for (Ln, mod k) to have the period m, 

L&fnmCL 2: If the following conditions are satisfied, 

t 
k = 0 ai9 (ai9a.) = 1 if i + j , (3.1) 

Ai is a period of (Ln9 mod a^)9 (3.2) 

Ai \m for all i9 (3.3) 

then 

m is a period of (Ln9 mod k). (3.4) 

VKOOJi By (3.2), Ln + i4.= Ln (mod a^) for all n. By (3.3), if follows that 

Ln+m = Ln (mod a^) for all n, and all i , (3.5) 

because a multiple of a period is also a period. Now (3.1) and (3.5) imply 
that Ln+m = Ln (mod k) for all n9 which proves (3.4). 

Lemma 2 applied nicely to the case of k = 705= 3*5-47, for (3.1) holds 
with t - 3, a1 = 3, a2 = 5, a3 = 47. Simple direct calculations with Ln show 
that (3.2) is satisfied with A1 = 8, A2 = 4, A3 = 32. Also (3.3) holds for 
m - 704, because 8, 4, and 32 are all divisors of 704. By Lemma 2, we con-
clude that Ln+7Qh = Ln (mod 705) for all n. In particular for n = 1 we ob-
tain L7Q5 E 1 (mod 705), which proves Theorem 2. For n = 0 we also obtain 
that L704 E L0 = 2 (mod 705), which we already know from (2.7). 
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This method will not allow us to prove Theorem 3. Indeed9 the relation 
(4.3) below shows that m.- 2464 is not a period of (Ln 9 mod 2465). 

k. A PROOF OF THEOREM 3 

By (2.3) we are to determine 

A21*6* (mod 2465). (4.1) 

From 2464 = 32 + 128 + 256 + 2048 = 25 + 27 + 28 + 2 1 X
9 we obtain 

A2™* = A2* • A2? » A2* • A 2 " . (4.2) 

By successive squaring of matrices mod 2465, we find that 

,25 = / 379 1714V A27 _ /1393 1886N 
" V.1714 2093/9 " V1886 814/9 

,28 - / 495 1482\ 2 n _ /1858 1221\ 
^ = (l482 1977/' A = V1221 614/' (m o d 2 4 6 5 )• 

Multiplying these together9 we find by (4.2) that 

246lf = /117 783\ 
~ \783 900Is 

and finally, by (2.3) 

(£:::) = ( £ s)(?)-a^)-=(10.17) <-««»• «•>> 
Thus, ̂ 2465 = 1 (mod 2465)9 which proves Theorem 3. 

The information that L2464 = 1017 (mod 2465) shows that m = 2464 is not 
a period of (Lk 9 mod 2465) , and this is the reason why the method of §3 would 
not work. 

Similarly, we can work out on a hand-calculator, such as SR-51A, the 
matrix An~1 (mod ri) for any n < 105. Indeed, all matrix multiplications, 
mod n9 are feasible, because all numbers that we encounter are < 1010, the 
capacity of the calculator. 

In [4]9 D. H. Lehmer pointed out that the second number of (5), namely 
2737 = 7.17.23 is a Fibonacci pseudoprime, and that Lemma 2 applies to show 
it. This is easily verified: Lemma 2 applies to k = 2737 with 

t = 3, ax = 7, a2 = 17, a3 = 23, A1 = 16, A2 = 36, A3 = 48, and m = 2736. 

Therefore, 2737 is a period of (Ln3 mod 2737) and it follows that L2736 E 2, 
L2737 = 1 (mod 2737). Therefore9 (7) is established. 

5. FURTHER APPLICATIONS OF THE MATRIX APPROACH 

Out applications in §2 and §4 were mainly computational. We now wish 
to show how the matrix A allows us to develop ab initio some of the best 
known properties of the Fibonacci numbers. 

Let us make the relation (2.3) or 

more explicit by writing 

where it becomes 

Xn \ _ nl XQ 

'n + lj Xr, -r x 

an bn 

AnrQ) (5.1) 

(5.2) lan bn\ 
\Cn dn) 
(%nX0 "*" &nXl o (5 3} 
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This easily generalizes to 
xn + k = anxk + ®nxk+la (5 .4 ) 

Xn + k+l = °nXk + ^nxk+l 
Indeed , by ( 5 . 1 ) , 

(Xn+k \ = An+k/xQ\ m An . Ak/X\ m An/Xk \ 

\xn+k + l/ \ x l / \ x l / \xk + l/ 

aga in by ( 5 . 1 ) . This and (5 .2 ) show t h a t (5 .4 ) h o l d s . We o b t a i n xn = Fn i f 
we choose xQ = FQ = 0 and x1 - F1 = 1, and (5 .3 ) shows t h a t 

Fn = bn 
F = d ' 
rn+l un 

(5.5) 

Applying (5.4) to xn = Fn and k = 1, and observing that F1 = 1, F2 = 1, we 
obtain 

Fn + 1 = an + bn 
£n+2 = Gn ^n' 

These relations and (5.5) show that 

(^"n n+1 n n~ 1 

°n ~ ^n + 2 "~ ^n+1 = n 

We have thus shown that 

^ =(Frx F
F

n ) • (5.6) 
See also [2, Theorem II]. 

Our previous remark that \An\ = (-l)n shows that 

Fn+iFn-i ~ FZ
n = ("!)". (5-7) 

which is a known relation derived in the same way in [2, Theorem III]. From 
(5.6), we also see that the elements of all the matrices of §2 and §4 are 
appropriate Fibonacci numbers reduced by the moduli 705 and 2465, respec-
tively. 

Let us derive the known property that 

Fn divides Fnr if v > 0. (5.8) 

From (5.4) and (5.6), we obtain for xn = Fn the relation 

'*•»•* ) JFn-l Fn \(Fk \ (5.9) 

V^n + k + l/ \Fn Fn + 1)\Fk + 1 ) ' 

Replacing n and k by nv and n, respectively, we obtain 

Fn(r+X) 

*n(r+l) +1 

F 

) 
) 

1) 

1*nr- 1 

~ \F 

= F F nr- 1 n 

^ nr \( n 

nr+ l / \ n+1, 

+ F F 
n v n + 1 

whence 

This shows that if Fn divides Fnr , then Fn also divides Fntr + 1\» which proves 
(5.8) by induction, since (5.8) is obvious if r = 1. 

As a further example, let us establish the known property: 

If fa, n) = d9 then (Fm , Fn ) = Fd . (5.10) 

Since d divides m and also n, it follows from (5.8) that 

Fd d i v i d e s Fm and a l s o Fn . (5 .11) 
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It remains to show that Fd is the greatest common divi r of Fm and Fn . 
Let v and s be such that d = mv + ns. From (5.9)9 on replacing n and k by 
mv and ns, respectivelys we obtain 

/^+«a \ = /Fmr-l Fmv \/Fna \ 
\Fmr + n8 +1 / V-^mr ^mr + 1 / \ F n e 4-1 / 

This shows in particular that Fd = Fmr + ns can be written as 

Fd = Fmv-lFns + Fmr>Fns+l' (5.12) 

By (5.8) 9 any divisor 6 of Fm and of Fn also divides Fmp and Fn8 9 and by 
(5.12) that 6 also divides i^ . Therefore9 Fd is the greatest common divisor 
of Fm9 Fn9 and (5.10) is established. 

A last example concerns the Lucas numbers. Let us show that 

£» + i£»-i -
 Ll = (-D" + 1 * 5. (5.13) 

From (5.1) and (5.6)9 we have 

Un+j'Ur1 £+i)u/-

Again for xn = Ln , but from (5.4) with Zc = -1, we get that 

(H-^--1 J" XI) 
V^n / \Fn *n+lA 2' 

because L_x = -ls LQ = 2. The last two relations combined give 

\Ln Ln + 1) \Fn Fn+J\2 I/" 

Passing to determinants and using (5.7), we obtain (5.13). 

6. SOME COMPOSITE NUMBERS THAT ARE NOT FIBONACCI PSEUDOPRIMES 

We have defined a number n as a Fibonacci pseudoprime (F. Psps) if it 
is composite and satisfies Ln = 1 (mod n). F. Psps are rare; We have seen 
that there are only seven F. Psps ;< 9161. It would seem of interest to ex-
hibit some composite n which are not F. Psps. A modest beginning in this 
direction are the following results. 

Tk&OKQM 4i The numbers 
2k

5 (k > 1) (6.1) 

are not Fibonacci pseudoprim.es. Actually 

L2k = 2k - 1 (mod 2*). (6.2) 

ThdOKQjm 5: If p is an odd prime such that 

Lp t I (mod p2)s (6.3) 
then 

Lpk $ 1 (mod pk) for k > 1, (6.4) 

hence pk is not a Fibonacci pseudoprime. 
For brevity5 we omit proofs which might be given elsewhere. We rather 

discuss the assumption (6.3). 
Computer computations made by George Logothetis (Nov. 1976) show that 

Ln f 1 (mod n2) if 2 £ n 4 7611, (6.5) 

whether n is prime or composite. He computed the remainder rn3 hence 
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Ln = rn (mod n2) 9 0 £ rn < n2
9 (6.6) 

for all n such that 2 <̂  n :< 7611, with the following results. 
1. The remainders rn = 0 and rn = 1 were never found. This result led 

us to formulate Conjecture 2 of our Introduction. 
2. The value rn = 2 appeared only If n ~ 0 (mod 24). 

F0r n = 24/c9 he found that rn = 2 precisely for the following 100 
values o^ fe: 

1 
14 
32 
55 
84 

2 
15 
36 
56 
90 

3 
16 
40 
57 
92 

4 
18 
42 
60 
96 

5 
20 
45 
64 
98 

6 
24 
46 
70 
100 

8 
25 
48 
72 
102 

9 
27 
50 
75 
108 

10 
28 
51 
80 
110 

12 
30 
54 
81 
112 

114 120 125 126 128 135 138 140 144 150 
153 155 160 162 165 168 171 180 182 184 
188 192 195 200 204 205 210 215 220 224 
225 228 230 240 243 250 252 255 256 270 
275 276 280 285 288 294 300 305 306 310 

This Is remarkable numerical evidence. From generally large values9 the re-
mainder rn in (6.6) drops down to rn - 2 for n = 24fc and values of k as 
listed. We also mention that the last Lucas number9 L761l9has 1591 digits. 

From the identity Lhn - 2 = 5(F2n)2 [2, Identity I16> p. 59] , it fol-
lows that L2hk - 2 - 5(F12 k)2. Therefore, L2hk - 2' = 0 [mod (24fc)2] if and 
only if 

F12k = 0 (mod 24fc). (6.7) 

From the computer results above, we see that (6.7) holds for the 100 values 
of k listed above, and does not hold for the other values of 

k £ [7611/24] = 317. 

REFERENCES 

1. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. 
3rd ed. Oxford: Oxford University Press, 1954. 

2. V. E. Hoggattj Jr. Fibonacci and Lucas Numbers. Boston: Houghton 
Mifflin Co.9 1969. 

3. V. E. Hoggatt9 Jr.9 & Marjorie Bicknell. !fSome Congruences of the Fi-
bonacci Numbers Modulo a Prime p." Math. Magazine 47 (1974):210-214. 

4. D. H. Lehmer. Personal letter to the authors, November 28, 1976. 

FREE GROUP AND FIBONACCI SEQUENCE 

G. WALTHER 
Institut fur Didaktik der Mathematik, Postfach 380, W. Germany 

Let J be a nonempty set X = {x^\i e J} where J is a suitable index set 
and J"1 another set in one-to-one correspondence with X. A word of length 
n in the elements of X U X'1 is an ordered set of n elements (n^O) each of 
X U X'1. 

A word of length n will be written as x^\ . .. x£ where each sign s^ is 
i or -1. With "1" we denote the unique word of length 0. The product of 
two words is defined as follows. Let a be an arbitrary word la = al : a. 


