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Therefore, NEWTON(#n_x) = SECANT(a?„_x , xn_1)9 and so (iii) follows from-(iv). 
Note that this identity holds for any polynomial equation f(x) = 0 . 

(iv) By (6),. 
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Remcmki* t 

aum+n+1/aum+n (by the lemma) 
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1. The theorem does not generalize to polynomials of degree higher than 2. 
2. Not only do the ratios of the consecutive Fibonacci numbers converge to 

ip9 they are the "best" rational approximation to #>; i.eM if n > 1, 0 < F <_ Fn 
and P/F + Fn + 1/Fn9 then \Fn + 1/Fn-<p\ < \P/F-<P\ by [4]. Since Newton's method 
and the secant method produce subsequences of Fibonacci ratios, they also pro-
duce the best rational approximation to <p, 
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A CHARACTERIZATION OF THE FUNDAMENTAL SOLUTIONS TO 
PELL'S EQUATION u2 - Dv2 = C 
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Due to a confusion originating with Euler, the diophantine equation 

(1) u2 - Dv2 = C9 

where M s a positive integer that is not a perfect square and C is a nonzero 
integer, is usually called Pell1's equation. In a previous article [1, Theorem 
2], the following theorem was proved. 

TkdOKOm I: Let x1 + y 1/D be the fundamental solution to x2 - Dy2 = 1. If k = 
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0/i)7(^i- 1) and if uQ + v0/B is a fundamental solution to u2 - Dv2 = -#9 where 
tf > 0, then y0 = \v0\ >_ k\u0\ . If k = (Dy1)/(x1~ 1) and if u0 + i>ô 0 is a fun-
damental solution to u2 - Dv2 = tf, where 21/ > 1, then u0 = |w0 | >. k\v0\. 

In Theorem 49 we shall prove the converse of this result. In the sequel, 
the definition of a fundamental solution to Eq. (1) given in [1] will be used. 
This definition differs from the one in [2, pe 205] only when v0 < 0. In this 
case, if the fundamental solution given in [1] is denoted by uQ + V0/D9 then 
the one given by the definition in [2] would be -(u0 + v0/D). We shall need to 
recall Remark A of [1] and to add to the three statements of this remark the 
statement: 

(iv) If C <_ 1 and -uQ + VQ/D is in K then uQ _> 0. If C _> 1 and uQ - VQ/D 
is in K then vQ >_ Q. 

Alsos we shall need the following result (see [19 Theorem 5]). 

Tk2.QH.Qm 2'- If u + v/D is a solution in nonnegative integers to the diophantine 
equation u2 - Dv2 - Cs where C ̂  19 then there exists a nonnegative integer n 
such that u + v/D = (u0 4- v0/D)(x1 + y1/B)n where u0 + vQ/D is the fundamental 
solution to the class of solutions of u2 - Dv2 = C to which u + v/5 belongs and 
xx + y1i/D is the fundamental solution to J:2 - % 2 = 1. 

We now need to prove a lemma and a simple consequence of this lemma. 

Lemma 3*' Let u0 + y0/zJ be a fundamental solution to a class of solutions to 
u2 - Dy2 = C. If, for n _> 1, we let wn + yn/D = (u0 + tf0i/D) (#i + yxfDY 9 then 
un > 0 and vn > 0 for n >_ 1. 

Vn.oo^i Since 

wx + t^/D = (u0 + ^o/^XXi + y^/D) = (u0X! + Dv^y-i) + (u0y1 + VQX^T/D, 

we have that ux = u^xx + Bv{^y1 and ^ = z^^ + vQx1. 
We now begin an induction proof of Lemma 3. First, suppose u\ - Dv0 = C9 

where C < 0. This implies, by Remark A [1], V0 > 0„ Hence uQ >_ 0 implies ux > 
"o#i — uo .> 0 a n d ^i > yo > 0. Thus suppose u0 < 0. By Theorem 1, 

V* - ^~=~1 = Dyx 

Whence, ux = u0xx + Ẑ 02/i >_ ~^o > °  a n d yi = uo£/i + yo^i — yo > 0e Therefore, 
for C < 0, ux > 0 and i;x > 0. 

Next, suppose u\ - ~Dv\ = C5 where C > 0. This implies u0 > 0. Thus VQ >_ 0 
implies ux > u0 > 0 and yx > y0 ^ 0. Thus suppose vQ < 0. Hence C > 19 so by 
Theorem 1, 

U°  -^"i - 1 " " 2/i " 
Whence, ux _> w0 > 0 and v1 >_ -V0 > 09 This completes the proof of Lemma 3 for 
n = 1. 

Since 

(2) (un + 1 + i>n + 1^5) = (un + vn/D)(x1 + i/^) 

= (unx1 + ^2/i) + (a?!^ + y±un)fD, 

the assumption wn > 0 and vn > 0 implies un + 1 > 0 and yn+1 > 0. 

Co/ioZta/iy: With u0, U09 un9 and yn defined as in Lemma 3, we have un + 1 > un and 
y«+i > ^ f o r n > 0 . 

Vfiool* i n t n e proof of Lemma 3, it was shown that v± 2L VQ and that, in ad-
dition, for u0 > 0 or C > 0 we actually have v1 > V0 . For the case u0 < 0 and 
(7 < 0, it follows from the proof of Lemma 3 that v± = VQ implies u± = -u0. So 
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~uQ + V0/D = U-L + vX/D belongs to the same class of solutions to u2 - Dv2 = C 
as uQ +'v0/D. Since we are assuming u0 < 0, this contradicts (iv) of Remark A 
[1]. Hence, even in this case, v1 > V0 . In a similar manner, it is seen that 
we always have u1 > uQ. Since.wn > 0 and vn > 0 for n >_ 1, (2) implies that 
un+i > un a n d vn+1 > vn forn > 1. 

TkdQltm 4; If u + y/D is a solution in nonnegative integers to u2 - Dv2 = -N, 
where # _> 1» and if v>_ku9 where k = (^1)/(^1- 1) s then u + y/D is the funda-
mental solution of a class of solutions to u2 - Dv2 =-N. If u + yi/5" is a solu-
tion in nonnegative integers to u2 - Dv2 = N, where N > 1, and If u >_ kv5 where 
fc = (Dy1)/(x1- 1) 9 then u + y/D is the fundamental solution of a class of solu-
tions to u2 ~ Dv2 - N. 

Vftooj- By Theorem 2, u + y/D = (u0_+ u0/D) (̂ x + yx/D)n = un + i^/D, where 
n is a nonnegative integer and uQ + y0/^ is a fundamental solution to u2 - Dy2 

= ±21/. We shall prove u + v/D = u0 + U0i/D. So assume n _> 1. Then we have 

Thus W n - 1 = Xlun - Dy1vn and ^ _ x = -y±un + xxvn. 
First, suppose u + v/D is a solution to u2 - Dv2 = -N. We know that 

v = vy, > ku-y, -

Hence 
Vn-l = "2/iW„ + ̂ n = (xl ~ l)Vn ~ 2/'l̂  n + Un .> ̂ n • 

But by the corollary to Lemma 3, Vn_± < vn for n > 1. Thus n = 0 and the proof 
is complete for the case u2 - Dv2 = -N. 

Now, suppose u + y/Z? is a solution to u2 - Dv2 = N. We know that 

u n >_ fcur 
% A 

(Please turn to page 92) 
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ABSTRACT 

An integer m is said to be n-hyperperfect if m = 1 + n[o(m) -m- 1] . These 
numbers are a natural extension of the perfect numbers, and as such share re-
markably similar properties. In this paper we investigate sufficient forms for 
hyperperfect numbers. 

1. IMTROVUCTWN 

Integers having "some type of perfection" have received considerable atten-
tion in the past few years. The most well-known cases are: perfect numbers 
( U K [1.2], [13], [14], [15]); multiperf ect numbers ([1]) ; quasiperf ect numbers 
([2]); almost perfect numbers ([3], [4], [5]); semiperfect numbers ([16], [17]); 


