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The "angle" we have in mind is a gnomon, a planar region that has the gen-
eral shape of a carpenterfs square. At the time of Pythagoras, a carpenterfs 
square was in fact called a gnomon. The term came from Babylonia, where it 
originally referred to the vertically placed bar that cast the shadow on a sun-
dial. The ancient Greeks also inherited a large body of algebra from the Baby-
lonians, which they proceeded to recast into geometric terms. The gnomon became 
a recurrent figure in the Greek geometric algebra. 

There are several reasons why Babylonian algebra was not adopted as it was, 
principally the discovery of irrationals: an irrational was acceptable to the 
Greeks as a length but not as a number. A secondary reason but, nevertheless, 
one of significance, was the Greek "delight in the tangible and visible" [2], 

In this note we shall attempt to make the numbers F± = 1, F2 ~ 1» F3 = 2, ... 
in the Fibonacci sequence "tangible and visible" by representing each Fm with a 
gnomon. These figures will enable us geometrically to derive or interpret many 
of the standard identities for the Fibonacci numbers. The ideas work equally 
well for the Lucas numbers and other generalized Fibonacci number sequences. 

The gnomons we shall associate with the Fibonacci numbers are depicted in 
Figure 1. The angular shape that represents the mth Fibonacci number will be 
called the Fm-gnomon. In particular, "observe" the FQ = 0-gnomon! 
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The dashed lines in the lowermost gnomons indicate how the Fm- and Fm + 1-
gnomons can be combined to form the Fm + 2-gnomon. This geometrically illustrates 
the basic recursion relation 

The left-hand column of Figure 1 shows rather strikingly that the evenly 
indexed Fibonacci numbers are differences of squares of Fibonacci numbers. In-
deed 

F0 2.n 
F«\i ~ Fn-i> n > l . 

Equally obvious from the right-hand column i s the iden t i ty 
F2n + 1 = Fn\l + Fn> n > 0 . 

Several other i d e n t i t i e s can be read off eas i ly i 
r 2 n + l r n - l r n + l T rnrn + 29 n — L * 

F = F F — F F n > \ • 
r 2 n + l rn + 2rn + l rn£n-l> n — L ' 

F - = Fn-lFn + FnFn + 1> n > l . In 

Since L„ L n + 1 + Fn„1 is the nth Lucas number, it follows from (6) that 

(2) 

(3) 

w 
(5) 

(6) 

(7) Fm = LnFn, n > 1. 
The gnomons in the left-hand column of Figure 1 can be superimposed in the 

manner shown in Figure 2(a). This shows how the F2n-gnomon can be decomposed 
into "triple" gnomons of area F2- - F2.i-2> J = 15 ..., n. From identity (1), 
we already know F? ~ ~ = F 

• 2 3 - 1 r2j 

F1 + F3 

2 j - 2 » «7 
F 2> _2 , and so 

+ F 2n-l Fzn9 n > 1. (8) 

In a similar manner (note the shaded unit square "hole") we see from Figure 
2(b) that 

F2 + Fk + + F, Fn 1, n > 1. (9) 
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fa; 
Fig.2 

(b) 

We have noted that the Fm + 2 - gnomon can be dissected into an Fm+1- and Fm -
gnomon. The larger of these can, in turn, be dissected into an Fm- and Fm„1-
gnomon, and the larger of these can then be dissected into an Fm„1- and Fm_2-
gnomon. Continuing this process dissects the original Fm+2-gnomon into a spiral 
that consists of the Fj -gnomons, j= 1, .. ., m9 together with an additional unit 
square (shown black), as illustrated in Figure 3. The separation of the gno-
mons into quadrants is rather unexpected. 

From Figure 39* we conclude that 

F1 + F2 + + F F - 1, m >. 0. (10) 
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Geometrically, we see that the first m Fibonacci gnomons can be combined with 
an additional unit square to form the Fm+2-gnomon, It is interesting to check 
this out successively for the special cases m = 09 1, 2, ... . 

The spiral pattern gives rise to additional identities. For example, by 
adding the areas of the gnomons in the first quadrant, we find 

F1 + F5 + + F„ F F n > 1 
L 2n-l 2n 9 u — x • 

The same procedure for the other three quadrants yields: 

Fz + F6 + ••• 
F3 + F7 + ••• 

Fh + FB + 

+ Fu = F?n, n >l; 

kn-l 

+ F - F 
ZnL 2n+ 1' 
2 1, n > 1. 

(11) 

(12) 

(13) 

(14) 

The gnomons in the first quadrant are each a sum of two squares. (Some ad-
ditional horizontal segments can be imagined in Figure 3*) We see that 

F* + Fl + + F = F F 
T n 2n-l r 2n-lL 2n • 

n > 1. 

Similarly9 the third quadrant demonstrates 

F l + F2 + + F2n = F2nF2n+l> * > *• 

(15) 

(16) 

Of course9 identities (15) and (16) are more commonly written simultaneously in 
the form 

F l + F2 + + Fm = F
m

Fm + i> m > !' (17) 

Next, consider the F2n_1 by FZn + 1 rectangle that the spiral covers in the 
right half-plane. Evidently, the area of this rectangle is one unit more than 
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the area of the F2n by F2n square covered by the spiral in the third quadrant. 
Thus 

F2»-i^2„ + i
 =FL + 1. n > l . (18) 

An analogous consideration of the F0 by F2 _ rectangle covered by the spiral 
in the left half-plane shows 

F F 
In 2n+2 2n + l 1» n >, .1. (19) 

The black square at the center of the spiral plays an interesting role in the 
geometric derivation of these relations. 

The geometric approach used above can be extended easily to deal with gen-
eralized Fibonacci sequences T1 = p, T2 = q, T3 = p+q, T^ - p+2qs . .., where 
p and q are positive integers. The Tm-gnomons can be taken as shown in Figure 
4 (however, it should be mentioned that other gnomon shapes can be adopted, and 
will do just as well). 
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From Figure 4, it is clear that 

Tm+2 = Tm + 1 + Tm, m > 1; 

•̂  2n = J-n-l^n + ^n^n + l» n — -1- »• 

(20) 

(21) 

(22) 

As before, a spiral pattern can be obtained readily. Figure 5 shows the spi-
ral that corresponds to the Lucas sequence L1 
where p = 1 and q = 3. 
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It is clear from Figure 5 that 

L± + L2 + . . . + Lm = Lm+Z - 3,m>l. (23) 

For the generalized sequence, one would find 

T± + T2 + ... + Tm = Tm+2 - qs m > 1. (24) 

Beginning with a qx 1 (black) rectangle, one can use identity (24) successively 
for m - 1, 29 ... to generate Tm-gnomons. A variety of identities for gener-
alized Fibonacci numbers can be observed and discovered by mimicking the proce-
dures followed earlier. 

It seems appropriate to conclude with a remark of Brother Alfred Brousseau: 
"It appears that there is a considerable wealth of enrichment and discovery 
material in the general area of Fibonacci numbers as related to geometry" [1]. 
Additional geometry of Fibonacci numbers can be found in Bro. Alfredfs article. 
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1. INTRODUCTION 

The Fibonacci numbers are defined by the well-known recursion formulas 

F = 0 F = ] F = F 4- F 

and the Lucas numbers by 

^ 0 = 2 ' L l = *» Ln = Ln-l + Ln-2' 

J. H. E. Cohn [2] determined the Fibonacci and Lucas numbers that are perfect 
squares. R. Finkelstein and H. London [3] gave a rather complicated determina-
tion of the cubes in the Fibonacci and Lucas sequences. Diophantine equations 
whose solutions must be Fibonacci and Lucas cubes occur in C. L. Siegel!s proof 
[7] of H. M. Stark*s result that there are exactly nine complex quadratic fields 
of class number one. This paper presents a simple determination of all Fibo-
nacci numbers Fn of the form 2a3 X3 and all Lucas numbers Ln of the form 2a X3. 

2. PRELIMINARY REDUCTIONS 

From the recursion formulas defining the Fibonacci and Lucas numbers, it is 
easily verified by induction that the sequence of residues of Fn and Ln (mod p) 
are periodics and in particular that 

2\Fn iff 3|w , (1) 

2\Ln iff 3|n (2) 

3\Fn iff 4|n (3) 


