ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by

A. P. Hill.man

University of New Mexico, Albuquerque, NM 87131
Please send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to PROFESSOR A. P. HILLMAN, 709 Solano Dr., S.E., Albuquerque, NM 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS

The Fibonacci numbers F_{n} and Lucas numbers L_{n} satisfy

$$
\begin{aligned}
& F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1 \\
& L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
\end{aligned}
$$

and
A1so, a and b designate the roots $(1+\sqrt{5}) / 2$ and $(1-\sqrt{5}) / 2$, respectively, of $x^{2}-x-1=0$.

> PROBLEMS PROPOSED IN THIS ISSUE

B-442 Proposed by P. L. Mana, Albuquerque, NM
The identity

$$
2 \cos ^{2} \theta=1+\cos (2 \theta)
$$

leads to the identity

$$
8 \cos ^{4} \theta=3+4 \cos (2 \theta)+\cos (4 \theta)
$$

Are there corresponding identities on Lucas numbers?
B-443 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
For all integers n and w with w odd, establish the following

$$
L_{n+2 w} L_{n+w}-2 L_{w} L_{n+w} L_{n-w}-L_{n-w} L_{n-2 w}=L_{n}^{2}\left(L_{3 w}-2 L_{w}\right) .
$$

B-444 Proposed by Herta T. Freitag, Roanoke, VA
In base 10, the palindromes (that is, numbers reading the same forward or backward) 12321 and 112232211 are converted into new palindromes using

$$
\begin{aligned}
99\left[10^{3}+9(12321)\right] & =11077011 \\
99\left[10^{5}+9(112232211)\right] & =100008800001
\end{aligned}
$$

Generalize on these to obtain a method or methods for converting certain palindromes in a general base b to other palindromes in base b.

B-445 Proposed by Wray G. Brady, Slippery Rock State College, PA
Show that

$$
5 F_{2 n+2}^{2}+2 L_{2 n}^{2}+5 F_{2 n-2}^{2}=L_{2 n+2}^{2}+10 F_{2 n}^{2}+L_{2 n-2}^{2}
$$

and find a simpler form for these equal expressions.
B-446 Proposed by Jerry M. Metzger, University of N. Dakota, Grand Forks, ND
It is familiar that a positive integer n is divisible by 3 if and only if the sum of its digits is divisible by 3. The same is true for 9. For 27, this
is false since, for example, 27 divides $1+8+9+9$ but does not divide 1899 . However, 27|1998.

Prove that 27 divides the sum of the digits of n if and only if 27 divides one of the integers formed by permuting the digits of n.

B-447 Based on the previous proposal by Jerry M. Metzger.
Is there an analogue of $B-446$ in base 5 ?

SOLUTIONS

Consequence of the Euler-Fermat Theorem
B-418 Proposed by Herta T. Freitag, Roanoke, VA
Prove or disprove that $n^{15}-n^{3}$ is an integral multiple of $2^{15}-2^{3}$ for all integers n.
Solution by Lawrence Somer, Washington, D.C.
The assertion is correct. First, note that

$$
n^{15}-n^{3}=n^{3}\left(n^{12}-1\right)
$$

Further,

$$
2^{15}-2^{3}=2^{3}\left(2^{6}-1\right)\left(2^{6}+1\right)=8(9)(7)(5)(13) .
$$

By Euler's generalization of Fermat's theorem,

$$
a^{\phi(n)} \equiv 1(\bmod n)
$$

if $(a, n)=1$, where ϕ is Euler's totient function. It follows that $a^{k \phi(d)} \equiv 1$ (mod d) for integral k. Now

$$
\phi(8)=4, \phi(9)=6, \phi(7)=6, \phi(5)=4, \text { and } \phi(13)=12
$$

Thus, it follows in each instance that if $(n, d)=1$, where $d=8,9,7,5$, or 13 , then $n^{12}-1 \equiv 0(\bmod d)$, since $\phi(d) \mid 12$ for each d. Further, if $(n, d) \neq 1$ for $d=8,9,7,5$, or 13 , then $d \mid n^{3}$, since $d \mid p^{3}$ for some prime p. Since (8, 9, $7,5,13)=1$, it now follows that

$$
n^{3}\left(n^{12}-1\right) \equiv 0 \quad(\bmod 8 \cdot 9 \cdot 7 \cdot 5 \cdot 13)
$$

Thus, $2^{15}-2^{3}$ divides $n^{15}-n^{3}$.
Also solved by Paul S. Bruckman, Duane A. Cooper, M. J. DeLeon, RobertM. Giuli, Bob Prielipp, C. B. Shields, Sahib Singh, Gregory Wulczyn, and the proposer.

NOTE: DeLeon generalized to show that for $k \in\{2,3,4\}, 2^{k}\left(2^{12}-1\right)$ divides $n^{k}\left(n^{\overline{12}}-1\right)$ for all positive integers n.

Symmetric Congruence

B-419 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
For i in $\{1,2,3,4\}$, establish a congruence

$$
F_{n} L_{5 k+i} \equiv a_{i} n L_{n} F_{5 k+i}(\bmod 5)
$$

with each a_{i} in $\{1,2,3,4\}$.
Solution by Sahib Singh, Clarion State College, Clarion, PA
We know that $n L_{n} \equiv F_{n}(\bmod 5)$. (See the solution to Problem $B-368$ in the December 1978 issue.) Thus

$$
\begin{equation*}
F_{n}=n L_{n}(\bmod 5), \tag{1}
\end{equation*}
$$

and $\quad(5 k+i) L_{5 k+i} \equiv F_{5 k+i}(\bmod 5)$ or $L_{5 k+i} \equiv(i)^{-1} F_{5 k+i}(\bmod 5)$.

Multiply (1) and (2) to get

$$
F_{n} L_{5 k+i} \equiv(i)^{-1} n L_{n} F_{5 k+i}(\bmod 5)
$$

Thus, $a_{i}=(i)^{-1}$ where ($\left.i\right)^{-1}$ is the multiplicative inverse of i in Z_{5}. Therefore, $a_{1}=1, a_{2}=3, a_{3}=2$, and $a_{4}=4$.
Also solved by Paul S. Bruckman, M. J. DeLeon, Bob Prielipp, and the proposer.

Finding Fibonacci Factors

B-420 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
Let
$g(n, k)=F_{n+10 k}^{4}+F_{n}^{4}-\left(L_{4 k}+1\right)\left(F_{n+8 k}^{4}+F_{n+2 k}^{4}\right)+L_{4 k}\left(F_{n+6 k}^{4}+F_{n+4 k}^{4}\right)$.
Can one express $g(n, k)$ in the form $L_{r} F_{s} F_{t} F_{u} F_{v}$ with each of r, s, t, u, and v linear in n and k ?
Solution by Bob Prielipp, University of Wisconsin-Oshkosh, WI
The answer to the question stated above is "yes."
On pp. 376-377 of the December 1979 issue (see solution to Problem H-279)
Paul Bruckman established that

$$
F_{n+6 k}^{4}-\left(L_{4 k}+1\right)\left(F_{n+4 k}^{4}-F_{n+2 k}^{4}\right)-F_{n}^{4}=F_{2 k} F_{4 k} F_{6 k} F_{4 n+12 k} .
$$

Substituting $n+4 k$ for n yields

$$
F_{n+10 k}^{4}-\left(L_{4 k}+1\right)\left(F_{n+8 k}^{4}-F_{n+6 k}^{4}\right)-F_{n+4 k}^{4}=F_{2 k} F_{4 k} F_{6 k} F_{4 n+28 k} .
$$

Thus, $g(n, k)=$

$$
\begin{aligned}
& {\left[F_{n+10 k}^{4}-\left(L_{4 k}+1\right)\left(F_{n+8 k}^{4}-F_{n+6 k}^{4}\right)-F_{n+4 k}^{4}\right] } \\
& -\left[F_{n+6 k}^{4}-\left(L_{4 k}+1\right)\left(F_{n+4 k}^{4}-F_{n+2 k}^{4}\right)-F_{n}^{4}\right] \\
= & F_{2 k} F_{4 k} F_{6 k} F_{4 n+28 k}-F_{2 k} F_{4 k} F_{6 k} F_{4 n+12 k} \\
= & F_{2 k} F_{4 k} F_{6 k}\left[F_{(4 n+20 k)+8 k}-F_{(4 n+20 k)-8 k}\right] \\
= & F_{2 k} F_{4 k} F_{6 k} F_{8 k} L_{4 n+20 k},
\end{aligned}
$$

because $F_{s+t}-F_{s-t}=F_{t} L_{s}, t$ even (see p. 115 of the April 1975 issue of this journal).
Also solved by Paul S. Bruckman and the proposer.
Unique Representation
B-421 Proposed by V.E. Hoggatt, Jr., San Jose State University, San Jose, CA
Let $\left\{u_{n}\right\}$ be defined by the recursion $u_{n+3}=u_{n+2}+u_{n}$ and the initial conditions $u_{1}=1, u_{2}=2$, and $u_{3}=3$. Prove that every positive integer N has a unique representation

$$
N=\sum_{i=1}^{n} c_{i} u_{i}
$$

with $c_{n}=1$, each $c_{i} \varepsilon\{0,1\}, c_{i} c_{i+1}=0=c_{i} c_{i+2}$ if $1 \leq i \leq n-2$. Solution by Paul S. Bruckman, Concord, CA

We first observe that the condition " $c_{i} c_{i+1}=0=c_{i} c_{i+2}$ for $1 \leq i \leq n-2$ " should be replaced by

$$
\begin{equation*}
c_{i} c_{i+1}=0 \text { for } 1 \leq i \leq n-1 \text { and } c_{i} c_{i+2}=0 \text { for } 1 \leq i \leq n-2 \tag{1}
\end{equation*}
$$

Let $U=\left(u_{n}\right)_{n=1}^{\infty}$. We call a representation $(N)_{U} \equiv c_{n} c_{n-1} \ldots c_{1}$ of N a $U-$ nary representation of N if

$$
N=\sum_{i=1}^{n} c_{i} u_{i}
$$

with the c_{i} 's satisfying the given conditions, as modified by (1). It is not assumed a priori that such a representation is necessarily unique. In any U nary representation of N, any two consecutive " 1 's" appearing must be separated by at least two zeros. Without the modification given in (1), the representations are certainly not unique; examples:

$$
(3)_{U}=100=11 \text { and }(11)_{U}=11001=100010,
$$

ignoring (1) and substituting the given condition of the published problem.
We require a pair of preliminary lemmas.
Lemma 1:

$$
\begin{equation*}
\sum_{k=0}^{m} u_{n-3 k-1}=u-1,(n=2,3,4, \ldots), \text { where } m=\left[\frac{n-2}{3}\right] \tag{2}
\end{equation*}
$$

Proof: Using the recursion satisfied by the u_{n} 's,

$$
\sum_{k=0}^{m} u_{n-3 k-1}=\sum_{k=0}^{m}\left(u_{n-3 k}-u_{n-3 k-3}\right)=\sum_{k=0}^{m} u_{n-3 k}-\sum_{k=1}^{m+1} u_{n-3 k}=u_{n}-u_{n-3 m-3} .
$$

Note that $n-3 m-3=-1,0$, or 1 for all n. We may extend the sequence U to nonpositive indices k of u_{k} by using the initial values and the recursion satisfied by the elements of U; we then obtain:

$$
u_{-1}=u_{0}=u_{1}=1
$$

This establishes the 1emma.
Lemma 2: If $\left(u_{n}\right)_{U}=c_{m} c_{m-1} \ldots c_{1}$, then $m=n$ and $c_{i}=\delta_{n i}$ (Kronecker delta).
Proof: By definition,

$$
c_{m}=1 \quad \text { and } \quad u_{n}=\sum_{i=1}^{m} c_{i} u_{i} .
$$

Since $u_{n} \geq u_{m}$, thus $m \leq n$. On the other hand, since any two consecutive " 1 's" in a U-nary representation are separated by at least two zeros, it follows that

$$
u_{n} \leq \sum_{i=0}^{h} u_{m-3 k}, \text { where } h=\left[\frac{m-1}{3}\right]
$$

Substituting $n=m+1$ in Lemma 1 , it follows that $u_{n} \leq u_{m+1}-1$, or $u_{n}<u_{m+1}$. Since $u_{m} \leq u_{n}<u_{m+1}$, it follows that $m=n$. Hence $c_{n}=1$, from which it follows that the remaining $c_{i}{ }^{\prime}$ s vanish. Q.E.D.

Now, define S to be the set of all positive integers N that have a unique U-nary representation. We will find it convenient to extend S to include the number zero. Note that zero certainly satisfies all the conditions of "U-naryness," except for $c_{n}=1$; for this exceptional element of S only, we waive this condition. Note that $u_{k}=k \varepsilon S, k=1,2,3,4$.

We seek to establish that S consists of all nonnegative integers, and our proof is by induction on k. Assume that $K \varepsilon S, 0 \leq K<u_{k}$, where $k \geq 4$. In particular, $M \in S$, where $0 \leq M<u_{k-2}$. Then $(M)_{U}=c_{r} c_{r-1} \ldots c_{1}$, for some r, where $c_{r}=1$. Since $M<u_{k-2}$, thus $r \leq k-3$; otherwise, $r \geq k-2$, which implies $M \geq u_{k-2}$, a contradiction. Let

$$
\begin{equation*}
N=M+u_{k} \tag{3}
\end{equation*}
$$

Then

$$
N=\sum_{i=1}^{k} c_{i} u_{i}, \text { with } c_{k}=1, c_{i}=0, \text { if } r<i<k
$$

Since $r \leq k-3$, we see that the foregoing expression yields a U-nary representation of N, namely $(N)_{U}=c_{k} c_{k-1} \ldots c_{1}$, though not necessarily unique. Suppose that $(N)_{U}=d_{t} d_{t-1} \ldots d_{1}$ is another U-nary representation of $N=M+u_{k}$. Then (since $M \in S$) $d_{i}=c_{i}, 1 \leq i \leq r$. Moreover, $u_{k}=N-M$ has a unique U-nary representation, by Lemma 2; hence, $t=k$, which implies that $N \varepsilon S$.

Since $0 \leq M<u_{k-2}$, thus $u_{k} \leq N<u_{k-2}+u_{k}=u_{k+1}$. The inductive step is:

$$
S \supset\left\{0,1,2, \ldots, u^{r}-1\right\} \Rightarrow S \supset\left\{0,1,2, \ldots, u_{k+1}-1\right\}
$$

By induction, S consists of all nonnegative integers. Q.E.D.
Also solved by Sahib Singh and the proposer.
Lexicographic Ordering of Coefficients
B-422 Proposed by V.E. Hoggatt, Jr., San Jose State University, San Jose, CA
With representations as in B-421, let

$$
N=\sum_{i=1}^{n} c_{i} u_{i}, N+1=\sum_{i=1}^{m} d_{i} u_{i}
$$

Show that $m \geq n$ and that if $m=n$ then $d_{k}>c_{k}$ for the largest k with $c_{k} \neq d_{k}$. Solution by Paul S. Bruckman, Concord, CA

We refer to the notation and solution of $B-421$ above. Given

$$
(N)_{U}=c_{n} c_{n-1} \ldots c_{1} \text { and } \cdot(N+1)_{U}=d_{m} d_{m-1} \ldots d_{1},
$$

which we now know are the unique U-nary representations of N and $N+1$, respectively.

Since $u_{n} \leq N<u_{n+1}$ and $u_{m} \leq N+1<u_{m+1}$, thus $u_{m}-u_{n+1}<1<u_{m+1}-u_{n}$. Now $u_{m+1}>u_{n}+1>u_{n} \Rightarrow m+1>n$, since U is an increasing sequence. On the other hand, $u_{m}<u_{n+1}+1 \leq u_{n+2} \Rightarrow m<n+2$. Hence,

$$
\begin{equation*}
m=n \quad \text { or } \quad m=n+1 \tag{1}
\end{equation*}
$$

Note that (1) is somewhat stronger than the desired result: $m \geq n$.
Now, suppose $m=n$, and let k be the largest integer i such that $c_{i} \neq d_{i}$. Then $c_{i}=d_{i}, k<i \leq n$. Hence,

This, in turn, implies

$$
\sum_{i=k+1}^{n} c_{i} u_{i}=\sum_{i=k+1}^{n} d_{i} u_{i}
$$

$$
\begin{gathered}
N-\sum_{i=k+1}^{n} c_{i} u_{i}=N+1-1-\sum_{i=k+1}^{n} d_{i} u_{i} \\
1+\sum_{i=1}^{k} c_{i} u_{i}=\sum_{i=1}^{k} d_{i} u_{i}
\end{gathered}
$$

Suppose $c_{k}=1, d_{k}=0$. Then the left member of (2) is $\geq 1+u_{k}$. On the other hand, the right member of (2) is

$$
\leq \sum_{i=0}^{p} u_{k-1-3 i}=u_{k}-1, \text { where } p=\left[\frac{k-2}{3}\right]
$$

using the properties of the U-nary representation and Lemma 1 of the solution to $B-421$. This contradiction establishes the only remaining possibility, i.e., $c_{k}=0, d_{k}=1$. This establishes the desired result.

Also solved by Sahib Singh and the proposer.
Telescoping Infinite Product
B-423 Proposed by Jeffery Shallit, Palo Alto, CA
Here let F_{n} be denoted by $F(n)$. Evaluate the infinite product

$$
\left(1+\frac{1}{2}\right)\left(1+\frac{1}{13}\right)\left(1+\frac{1}{610}\right) \cdots=\prod_{n=1}^{\infty}\left[1+\frac{1}{F\left(2^{n+1}-1\right)}\right]
$$

Solution by Gregory Wulczyn, Bucknell University, Lewisburg, PA
Let L_{n} also be written as $L(n)$ and $A_{n}=1+\left[1 / F\left(2^{n+1}-1\right)\right]$. It is easily seen (for example, from the Binet formulas) that

$$
L(2) L(4) L(8) \ldots L\left(2^{n}\right)=F\left(2^{n+1}\right) \quad \text { and } \quad 1+F\left(2^{n+1}-1\right)=F\left(2^{n}-1\right) L\left(2^{n}\right) .
$$ Hence, $A_{n}=F\left(2^{n}-1\right) L\left(2^{n}\right) / F\left(2^{n+1}-1\right)$ and

$$
\begin{aligned}
\prod_{i=1}^{\infty} A_{n} & =\lim _{n \rightarrow \infty} \frac{F(1) F(3) F(7) F(15) \cdots F\left(2^{n}-1\right) L(2) L(4) L(8) \cdots L\left(2^{n}\right)}{F(3) F(7) F(15) \cdots F\left(2^{n+1}-1\right)} \\
& =\lim _{n \rightarrow \infty} \frac{F\left(2^{n+1}\right)}{F\left(2^{n+1}-1\right)},
\end{aligned}
$$

and the desired 1 imit is $\alpha=(1+\sqrt{5}) / 2$.
Also solved by Paul S. Bruckman, Bob Prielipp, and the proposer.

(Continued from page 6)

Hence

$$
u_{n-1}=x_{1} u_{n}-D y_{1} v_{n}=\left(x_{1}-1\right) u_{n}-D y_{1} v_{n}+u_{n} \geq u_{n} .
$$

Thus $n=0$.
REFERENCES

1. M. J. DeLeon. "Pe11's Equation and Pe11 Number Triples." The Fibonacci Quarterly 14 (Dec. 1976):456-460.
2. Trygve Nage11. Introduction to Number Theory. New York: Chelsea, 1964.
