SOLUTIONS FOR GENERAL RECURRENCE RELATIONS

LEONARD E. FULLER
Kansas State University, Manhattan, KA 66502
1. STATEMENT OF THE PROBLEM

In a recent article [1], the author obtained representations for the solutions of certain r, s recurrence relations. In this paper we shall give representations for the solutions of general recurrence relations. In Section 4 we shall show that the results in [1] are a special case of the results of Sections 2 and 3 of this paper.

We first of all characterize all decompositions of an integer n, restricted to the first m positive integers. We define a multinomial from this that satisfies an m th-order recurrence relation with special initial conditions. Next the set of m positive integers is restricted to a subset A containing m, and a second multinomial that satisfies a recurrence relation with special initial conditions is defined.

In Section 3, we obtain solutions for comparable recurrence relations with general initial conditions. The final result gives us a solution for the general recurrence relation:

$$
H_{p}=r_{a_{1}} H_{p-a_{1}}+\cdots+r_{a_{t}} H_{p-a_{t}} ; H_{0}, \ldots, H_{1-a_{t}} \text { arbitrary. }
$$

2. BASIC mth-ORDER RECURRENCE RELATIONS

One of the classic concepts in the theory of numbers is that of partitions of the positive integers. One of the subcases considered is for the component integers to be the set of integers from 1 to m. In this case we denote the set of all partitions of n as $P(n ; m)$. The number of elements in this set is $P_{m}(n)$. A given partition can be characterized by a set of integers k_{i}. That is,

$$
n=1 k_{1}+\cdots+m k_{m} .
$$

The integers k_{i} are referred to as the frequency of i in the given partitions. We refer to this given partition as $p(k, n ; m)$.

For a given $p(k, n ; m)$, we can represent n as a sum of integers from 1 to m in

$$
\frac{\left(k_{1}+\cdots+k_{m}\right)!}{k_{1}!\cdots k_{m}!}
$$

ways. Each such representation is called a "decomposition of n " (some authors call them "compositions"). We denote this expression as $d_{m}(k, n)$. It is the number of decompositions of the partition $p(k, n ; m)$.

This expression has a property that we shall find useful:

$$
\begin{align*}
\frac{\left(k_{1}+\cdots+k_{m}\right)!}{k_{1}!\ldots k_{m}!} & =\frac{\left(k_{1}+\cdots+k_{m}-1\right)!}{k_{1}!\ldots k_{m}!} \sum_{s=1}^{m} k_{s} \\
& =\sum_{s=1}^{m} \frac{\left(k_{1}+\cdots+k_{m}-1\right)!}{k_{1}!\cdots\left(k_{s}-1\right)!\ldots k_{m}!} . \tag{2.1}
\end{align*}
$$

Symbolically we have

$$
d_{m}(k, n)=\sum_{s=1}^{m} d_{m}(k(s), n-s),
$$

where $d_{m}(k(s), n-s)=0$ if $k_{s}=0$. Otherwise, it is the number of decompositions for the partition of $n-s$ where all the k_{i} are the same as for the k partition of n except that k_{s} is reduced by' 1 .

We use this number of decompositions to define a multinomial. We then show that it is the solution for a special recurrence relation. Let

$$
U_{n}=\sum_{p(n ; m)} d_{m}(k, n) r_{1}^{k_{1}} \ldots r_{m}^{k_{m}},
$$

that is, we sum over all partitions of n, a multinomial in r_{1}, \ldots, r_{m} whose coefficients are the number of decompositions of the given partition. We can now prove our first theorem.
Theorem 2.1: The multinomial U_{n} satisfies the recurrence relation

$$
U_{t}=\sum_{s=1}^{m} r_{s} U_{t-s} ; U_{0}=1, U_{-1}=\cdots=U_{I-m}=0
$$

By applying property (1) to the definition of U_{n}, we have

$$
\begin{aligned}
U_{n} & =\sum_{P(n ; m)} a_{m}(k, n) r_{1}^{k_{1}} \ldots r_{m}^{k_{m}} \\
& =\sum_{P(n ; m)} \sum_{s=1}^{m} a_{m}(k(s), n-s) r_{1}^{k_{1}} \ldots r_{m}^{k_{m}} \\
& =\sum_{s=1}^{m} r_{s} \sum_{P(n-s ; m)} a_{m}(k(s), n-s) r_{1}^{k_{1}} \ldots r_{s}^{k_{s}-1} \ldots r_{m}^{k_{m}} \\
& =\sum_{s=1}^{m} r_{s} U_{n-s} .
\end{aligned}
$$

We have used the fact that decreasing the frequency of s by 1 gives the restricted partitions of $n-s$. If s has a frequency of 0 for a given partition, then the corresponding term in the summation on s is 0 .

For $n<m$, the frequencies for the integers $n+1$ to m would all be zero. Hence the summation can be terminated at n. However, if we choose $U_{-1}=\ldots=$ $U_{1-m}=0$, then we do not need any restriction. This gives $m-1$ initial conditions. For the mth one, we shall choose $U_{0}=1$. This is logical, since all factorials are 0! and all exponents of the r_{i} are 0 . This would give a value of 1 . Hence the U_{n} does satisfy the prescribed recurrence relation.

What we have just proved for the case of the restricted partitions of n can be specialized for a proper subset $A=\left\{a_{1}, \ldots, a_{j}\right\}$ of the integers from 1 to m. For convenience, we assume m is in A. The set of all partitions of n restricted to the set A we label $P(n ; A)$. The number of elements in this set is $P_{A}(n)$. A given partition can be characterized by a set of frequencies k_{i}, so that

$$
n=a_{1} k_{a_{1}}+\cdots+a_{j} k_{a_{j}} .
$$

We refer to this given partition as $p(k, n ; \alpha)$.
For each such partition, we can represent n as a sum of integers in A in

$$
\left(\sum_{i=1}^{j} k_{a_{i}}\right)!/ \prod_{i=1}^{i} k_{a_{i}}!
$$

ways. We denote this number as $d_{A}(k, n)$, that is, there are this many decompositions of the given partition, restricted to A. We can define the following multinomial

$$
V_{n}=\sum_{P(n ; A)} d_{A}(k, n) \prod_{q \in A} r_{q}^{k_{q}} .
$$

We then have the following theorem.
Theorem 2.2: The multinomial V_{n} satisfies the recurrence relation

$$
V_{t}=\sum_{s \in A} r_{s} V_{t-s} ; V_{0}=1, V_{-1}=\cdots=V_{1-m}=0
$$

This theorem is a special case of Theorem 2.1. First of all, the restriction to the set A means that the frequencies $k_{i}=0$ if $i \varepsilon A$. This means that for each partition of n there is no s corresponding to each such i in the solution. Hence s is summed only on A. Furthermore, since the corresponding r_{i} is always to the zero power, we drop these r_{i} in the multinomial. The number of initial conditions is dependent only on the largest integer in A, which is assumed to be m.

3. GENERAL RECURRENCE RELATIONS

Using the results of the last section, we can obtain solutions for recurrence relations with arbitrary initial conditions. We shall consider two cases that are comparable to those in the last section. Our solutions will involve the U_{n} and V_{n}, respectively.
Theorem 3.1: The solution for the recurrence relation

$$
\begin{equation*}
G_{t}=\sum_{s=1}^{m} r_{s} G_{t-s} ; G_{0}, \ldots, G_{1-m} \text { arbitrary } \tag{3.1}
\end{equation*}
$$

is given by

$$
\begin{equation*}
G_{n}=\sum_{j=1}^{m} \sum_{q=j}^{m} r_{q} U_{n-j} G_{j-q} \tag{3.2}
\end{equation*}
$$

For $n=1$ in (3.2) the $U_{n-j}=U_{i-j}$ is zero except for $j=1$. In this case $U_{0}=1$. The double summation reduces to

$$
G_{1}=\sum_{q=1}^{m} r_{q} G_{1-q},
$$

which is (3.1) for $t=1$ and $q=2$.
For $n=2$ in (3.2) the $U_{2-j}=0$ for $j>2$. We then have

$$
G_{2}=U_{1} \sum_{q=1}^{m} r_{q} G_{1-q}+U_{0} \sum_{q=2}^{m} r_{q} G_{2-q}
$$

From the previous section, we have that $U_{0}=1$ and $U_{1}=r_{1}$. Also, by (3.1) the first sum is G_{1}. Hence we have

$$
G_{2}=r_{1} G_{1}+\sum_{q=2}^{m} r_{q} G_{2-q}=\sum_{q=1}^{m} r_{q} G_{2-q},
$$

which is (3.1) for $t=2$ and $s=q$.
We assume that (3.2) is a valid solution for $n=1, \ldots, i-1$. For $t=i$ in (3.1),

$$
G_{i}=\sum_{s=1}^{m} r_{s} G_{i-s}
$$

We have assumed solutions for all the G_{i-s} in this summation. Hence on substitution into this expression, we obtain

$$
\begin{aligned}
G_{i} & =\sum_{s=1}^{m} r_{s} \sum_{j=1}^{m} \sum_{q=j}^{m} r_{q} U_{i-s-j} G_{j-q} \\
& =\sum_{j=1}^{m} \sum_{q=j}^{m} r_{q}\left(\sum_{s=1}^{m} r_{s} U_{i-s-j}\right) G_{j-q} \\
& =\sum_{j=1}^{m} \sum_{q=j}^{m} r_{q} U_{i-j} G_{j-q} \cdot
\end{aligned}
$$

At the last step we use the fact that U_{n} satisfies a recurrence relation. This final result is (3.2) for $n=i$.

We are now ready to present the solution to a general recurcence relation. We assume that set A has the properties of the last section.
Theorem 3.2: The solution for the recurrence relation

$$
\begin{equation*}
H_{t}=\sum_{s \in A} p_{s} H_{t-s} ; H_{0}, \ldots, H_{I-m} \text { arbitrary } \tag{3.3}
\end{equation*}
$$

is given by

$$
\begin{equation*}
H_{n}=\sum_{q \in A} \sum_{j=1}^{q} r_{q} V_{n-j} H_{j-q} \tag{3.4}
\end{equation*}
$$

This theorem folluws from Theorem 3.1, just as Theorem 2.2 followed from Theorem 2.1. For convenience, we have interchanged the order of summations in the solution so that it is easier to adapt to the restriction on q.

4. SOME SPECIAL CASES

In this section we shall consider some special cases of the results of Sections 2 and 3. They are for both the U_{n} and G_{n} relations for $m=2$.

The restricted partitions of n for $m=2$ would be of the form $n=k_{1}+2 k_{2}$ 。 The summation over all such partitions can be represented by a summation on j when $j=k_{2}$. Then $k_{i}=n-2 j$, and the summation is from 0 to $[n / 2]$. The number of decompositions for a given partition would be given by

$$
d_{2}(k, n)=\frac{(n-2 j+j)!}{(n-2 j)!j!}=\binom{n-j}{j}
$$

The solution for U_{n} in this case is

$$
U_{n}=\sum_{j=0}^{\left[\frac{n}{2}\right]}\binom{n-j}{j} r_{1}^{n-2 j} r_{2}^{j} .
$$

For the more general G_{n} relation we have

$$
\begin{aligned}
G_{n} & =\sum_{j=1}^{2} \sum_{q=j}^{2} r_{q} U_{n-j} G_{j-q}=\left(r_{1} U_{n-1} G_{0}+r_{2} U_{n-1} G_{-1}\right)+\left(r_{2} U_{n-2} G_{0}\right) \\
& =\left(r_{1} U_{n-1}+r_{2} U_{n-2}\right) G_{0}+r_{2} U_{n-1} G_{-1}=U_{n} G_{0}+r_{2} U_{n-1} G_{-1} .
\end{aligned}
$$

Substituting in the solution for U_{n} and U_{n-1},

$$
G_{n}=\sum_{j=0}^{\left[\frac{n}{2}\right]}\binom{n-j}{j} r_{1}^{n-2 j} r_{2}^{j} G_{0}+\sum_{j=0}^{\left[\frac{n-1}{2}\right]}\binom{n-1-j}{j} r_{1}^{n-1-2 j r_{2}^{j+1} G_{-1}}
$$

We change the second index of summation by replacing $j+1$ by j, as follows:

$$
G_{n}=\sum_{j=0}^{\left[\frac{n}{2}\right]}\binom{n-j}{j} r_{1}^{n-2 j} r_{2}^{j} G_{0}+\sum_{j=1}^{\left[\frac{n+1}{2}\right]}\binom{n-j}{j-1} r_{1}^{n+1-2 j} r_{2}^{j} G_{-1}
$$

The author gave representations for some special recurrence relations in a previous paper [1]. We shall now show that these were particular cases of the U_{n} and G_{n} relations for $m=2$.

The first relation presented was a generalized Fibonacci sequence,

$$
G_{k}=r G_{k-1}+s G_{k-2} ; G_{0}=0, G_{1}=1,
$$

which has the solution

$$
G_{k}=\left[\sum_{j=0}^{\left[\frac{k-1}{2}\right]}(k-1-j) r^{k-1-2 j} s^{j}\right.
$$

We observe that both our indexing and the constants of the relations are different. To reconcile them, we replace n by $k-1, r_{1}$ by r, and r_{2} by s in the U_{n} solution. This gives us the desired result.

As a special case, when $r=s=1$ we have the Fibonacci sequence. The general term would be given by

$$
F_{k}=\sum_{j=0}^{\left.\frac{k-1}{2}\right]}(k-1-j)
$$

which is the number of decompositions of $k-1$ restricted to 1 and 2 .
Another sequence presented in [1] is the generalized Lucas sequence M_{k}, for which

$$
M_{k}=r M_{k-1}+s M_{k-2} ; M_{0}=2, M_{1}=r
$$

To obtain the solution we specialize the G_{n} for $m=2$. We replace n by $k-1$, r_{1} by r, r_{2} by s, G_{0} by r, and G_{-1} by 2 . We have

$$
M=\sum_{j=0}^{\left[\frac{k-1}{2}\right]}(k-1-j) r^{k-1-2 j} s^{j} r+\sum_{j=1}^{\left[\frac{k-1}{2}\right]}\binom{k-1-j}{j-1} r^{k-2 j} s^{j} 2
$$

We observe that the powers of r and s in both sums are the same. Hence we combine them into a single sum. It can be verified that this yields

$$
M_{k}=\sum_{j=0}^{\left[\frac{k}{2}\right]} \frac{k}{k-j}\binom{k-j}{j} r^{k-2 j} s^{j},
$$

which is the solution given in [1].
The third relation discussed in [1] is

$$
U_{k}=r U_{k-1}+s U_{k-2} ; U_{1}, U_{0} \text { arbitrary }
$$

We can identify this with our G_{n} relation if we let $n=k-1, r_{1}=r, r_{2}=$ $s, G_{0}=U_{1}$, and $G_{-1}=U_{0}$. This gives

$$
U_{k}=\sum_{j=0}^{\left[\frac{k-1}{2}\right]}(k-1-j) r^{k-1-2 j} s^{j} U_{1}+\sum_{j=1}^{\left[\frac{k}{2}\right]}\binom{k-1-j}{j-1} r^{k-2 j} s^{j} U_{0}
$$

Applying some algebra to combine the two sum yields the following solution:

$$
U_{k}=\sum_{j=0}^{\left[\frac{k}{2}\right]}(k-j) \frac{(k-2 j) U_{1}+j r U_{0}}{k-j} r^{k-1-2 j} s^{j} .
$$

This can also be verified directly.
In a future paper we shall show that there are generating functions for the four recurrence relations given in this paper. These can also be used for the special cases of this section. We can use them to generate with a computer as many terms in a given recurrence relation as desired.

REFERENCE

1. L. E. Fuller. "Representations for r, s Recurrence Relations." The Fibonacei Quarterly 18 (1980):129-135.

ON GENERATING FUNCTIONS AND DOUBLE SERIES EXPANSIONS

M. E. COHEN and H. S. SUN California State University, Fresno, CA 93740

1. INTRODUCTION

Recently, Weiss et α I. [9] gave a direct proof of a result due to Narayana [8] and Kreweras [6]:

$$
\begin{equation*}
\sum_{r=1}^{\infty} \sum_{s=1}^{\infty} \frac{\binom{r+s-1}{r}\binom{r+s-1}{s}}{r+s-1} u^{r} v^{s}=\frac{1}{2}\left[1-u-v-\left(1-2(u+v)+(u-v)^{2}\right)^{1 / 2}\right] \tag{1.1}
\end{equation*}
$$

A special case of Theorem la of this paper is a five-parameter generalization of (1.1):

$$
\begin{array}{r}
\sum_{k=0}^{\infty} \sum_{p=0}^{\infty} \frac{u^{k} v^{p}}{(\alpha+1+g k+h p)}\binom{\alpha+g k+k+h p}{k}\binom{\beta+g c k+h c p+p}{p} \\
=\frac{(1+z)^{\alpha+1}(1+y)^{\beta+1}}{(\alpha+1)} F_{1}\left[\begin{array}{ll}
1,1+\beta-c-\alpha c, & -y \\
(\alpha+1+h) / h, &
\end{array}\right] \tag{1.2}
\end{array}
$$

where

$$
u=\frac{z}{(1+z)^{g+1}(1+y)^{g c}}, v=\frac{y}{(1+z)^{h}(1+y)^{h c+1}}
$$

See Luke [7, Sec. 6.10] for a discussion of Padé approximation for the hypergeometric function on the right-hand side of (1.2). Letting

$$
g=-1, h=-1, c=1, \alpha=-2, \text { and } \beta=-2
$$

in (1.2) and some manipulation will give (1.1).
Equation (1.2) also appears to be an extension of the important equation (6.1) of Gould [5], to which it reduces for $z=0$.

An interesting simplification of (1.2) is the case $\beta=\alpha c+c-1$, giving:

$$
\begin{gather*}
\sum_{k=0}^{\infty} \sum_{p=0}^{\infty} \frac{u^{k} v^{p}}{(\alpha+1+g k+h p)}\binom{\alpha+g k+k+h p}{k}(\alpha c+c-1+g c k+h c p+p) \\
=\frac{(1+z)^{\alpha+1}(1+y)^{\alpha c+c}}{(1+\alpha)} \tag{1.3}
\end{gather*}
$$

