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It is clear from Figure 5 that 

L± + L2 + . . . + Lm = Lm+Z - 3,m>l. (23) 

For the generalized sequence, one would find 

T± + T2 + ... + Tm = Tm+2 - qs m > 1. (24) 

Beginning with a qx 1 (black) rectangle, one can use identity (24) successively 
for m - 1, 29 ... to generate Tm-gnomons. A variety of identities for gener-
alized Fibonacci numbers can be observed and discovered by mimicking the proce-
dures followed earlier. 

It seems appropriate to conclude with a remark of Brother Alfred Brousseau: 
"It appears that there is a considerable wealth of enrichment and discovery 
material in the general area of Fibonacci numbers as related to geometry" [1]. 
Additional geometry of Fibonacci numbers can be found in Bro. Alfredfs article. 
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1. INTRODUCTION 

The Fibonacci numbers are defined by the well-known recursion formulas 

F = 0 F = ] F = F 4- F 

and the Lucas numbers by 

^ 0 = 2 ' L l = *» Ln = Ln-l + Ln-2' 

J. H. E. Cohn [2] determined the Fibonacci and Lucas numbers that are perfect 
squares. R. Finkelstein and H. London [3] gave a rather complicated determina-
tion of the cubes in the Fibonacci and Lucas sequences. Diophantine equations 
whose solutions must be Fibonacci and Lucas cubes occur in C. L. Siegel!s proof 
[7] of H. M. Stark*s result that there are exactly nine complex quadratic fields 
of class number one. This paper presents a simple determination of all Fibo-
nacci numbers Fn of the form 2a3 X3 and all Lucas numbers Ln of the form 2a X3. 

2. PRELIMINARY REDUCTIONS 

From the recursion formulas defining the Fibonacci and Lucas numbers, it is 
easily verified by induction that the sequence of residues of Fn and Ln (mod p) 
are periodics and in particular that 

2\Fn iff 3|w , (1) 

2\Ln iff 3|n (2) 

3\Fn iff 4|n (3) 
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3\Ln iff n = 2 (mod 4) (4) 

5j£„ (5) 
l\Ln iff n = 4 (mod 8) (6) 

TJC •• 1 "+ /5 , ~ 1 - /5 . . n ., >J=.. , , . , 
If e 0 = — ^ " a n d £o = r — , it is also easily verified by induction that: 

Ln + Fn/5 i 
c- — —1 w L scn ~£"n\ T — cn 4- ~Fn 

From t h e s e fo rmulas , t he fo l lowing i d e n t i t i e s a r e e a s i l y d e r i v e d : 

(7) 

(8) 

(9) 

(10) 
Further, from (1), (2), and (7), we find that 

[ 2. if-3|n 
(*V,. Ln) = (11) 

| 1 otherwise 

Finally, since Fn - (-1) F„n and Ln- (-l)nL_n9 it suffices to consider the case 
n > 0 in what follows. 

The identity (7) is the basis of a reduction of the determination of Fibo-
nacci or Lucas cubes (or, more generally, Fibonacci and Lucas Pth powers) to 
solving particular Diophantine equations. It turns out that this identity ac-
tually characterizes Fibonacci and Lucas numbers, in the sense that (L2n , # ) 
for n > 0 is the complete set of positive solutions to the Diophantine equation 
X2 - 5J2 = 4, and (£2n+i> ^2n + 1) for n>_ 0 is the complete set of positive solu-
tions to the Diophantine equation X2 - 5Y2 = -4. From these facts, it follows 
that the positive Fibonacci cubes are exactly those positive J3 for which X2 -
5J6 = ±4 is solvable in integers, and the positive Lucas cubes are those posi-
tive X3 for which X6 - 5JZ = ±4 is solvable in integers. For our purposes, it 
suffices to know only that (7) holds, so that the Fibonacci and Lucas cubes are 
a subset of the solutions of these Diophantine equations. 

We now show that the addition formulas (8)-(10) can be used to relate Fibo-
nacci numbers of the form 2a3 X3 to those of the form J3, and Lucas numbers of 
the form 2aX3 to those of the form J3. 

lemma f: (i) If Fln is of the form 2a3bX3 , so is Fn . 
(ii) If F3n is of the form 2 a 3 ¥ s so is Fn . 
(iii) If L3n is of the form 2aX3 , so is.L„. 

P/£O0j[: (i) follows from (8) and (11). (ii) follows from (9) and (11), where 
we note that (Fn, 3L2)\l2. Finally, (iii) follows from (10), (11), and (5), 
noting that (Ln, 15^)|12. 

Lemma 2: (i) If Fn = 2a3bX3 and n = 2c3d/c with (6, k) = 1, then 2^ = Z3. 
(ii) If Ln = 2aX3 and n = 3̂ fe with (3, fc) = 1, then Lk = Z3. 

VtiOO^i For (i) , note that Fk is of the form 2a3 J3 by repeated application 
of Lemma 1, while (Fk , 6) = 1 by (1) and (3), so Fk - Z . (ii) has a similar 
proof using (2). 

RemflAfe: The preceding two lemmas are both valid in the more general case where 
"cube" is replaced by "Pth power" throughout, using the same proofs. 

\ 
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3. MAIM RESULTS 
Tk&Q/i&n 1: The only Fn with (n, 6) = 1 that are cubes are F1 = 1 and F 

V-HJOO^: Let Fn = Z3 and note that (n, 6) 

i * - — - -1 
1 and (1) and (7) yield 

Setting X = 5Z2 and Y 

5Z6 - 4 = L2 

5Ln yields 

X3 -

and (2, Z) = 1. 

100 

(12) 

(13) 

and (2) and (4) require (7, 6) = 1. We examine (13) over the ring of integers 
of Q(^/T0). It has been shown (see [6] and [8]) that this ring has unique fac-
torization that its members are exactly those (1/3) (A + B^TO + C^TOO) where 
A, Bs and C are integers with A^BEC (mod 3) , and that the units in this ring 
are of the form ±eK where e = (1/3)(23 + 11NK10 + S^TOO). Equation (13) fac-
tors as 

(X - ̂ 100) (X2 + \Tl00X + lG^TO) = J2. (14) 
Write 

na2
s (15) 

-3/KJ0 and X2 + \/Too" + lO^To, Then 

X - V100 = 

where n in square free and divides both X 

n (J
2 + ̂  100Z + IQ^lO) - (X + 2 30 V 10. 

Since (I, 3) = 1, (n, 3) = 1, and n|l0/T0. Now (/TO)3 = 2 ' 5 and (2, 5) = 1, 
so by unique factorization we can find A and $ such that \KTo~ = A$, 5 = A3eK

9 
Now Y = 5Ln and (2, Z<n) = 1 by (2), so 

Hence Til A1*. But 5|X3 so A3|X, and hence 

and 2 ,le-K Then n 10V10 

(14) shows that ($, J 

^ 

J Since r] is square free, rj must be a unit. By absorbing squares 
of units into a, we need only consider n = ±1 and n = ±e in (15)< 

Cd6d l! X - Let a (1/3) (A + BViQ + CVlOQ) . 
sentation of integers in this form is unique. 

X = ±~(AZ + 2QBC) 

0 - ±™(Z4B + IOC2) 

1 = ±~(BZ + 2AC) 

Since repre-

(16) 

(17) 

(18) 

Equation (17) shows B \ 5C2. Squaring (18) and multiplying both sides by 3 -5, 
we see that B divides each term on the right side so S|34 * 5. For each of the 
twenty values of B satisfying B\3h • 55 we can solve (17) and (18) for A and C9 
and verify the only integer solutions (A9 5, C) are (-5, 1, 1) and (5, -1, -1) 
when rj = 1, and (0, ±3, 0) when n = -1. Evaluating X by (16) we find that the 
first two solutions yield Z = ±1 in (12), and thus Fx = 1 and F_± = -1, while 
the third solution is extraneous to (13). 

Co6e It X Proceed ing a s in Case 1, we o b t a i n 

X = ±-~{23A2 + 11052 + 500C2 + 100,45 + 22MC + 460SC) 

0 = ±~j{llA2 + 5052 + 230C2 + 46A5 + 10QAC + 230SC) 

-1 - ±~{5A2 + 23S2 + HOC2 + 22AB + MAC + 1003(7) 

(19) 

(20) 

(21) 

From (20) 2\A SO that 2\X in (19), and such solutions are extraneous to (12), 
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RmciAk'- It can be shown (see [1] and [3]) that the complete set of solutions 
(X, I) to (13) is (5, ±5), (10, ±30), and (34, ±198). 

ThtLQtiQjtn 2: The set of Fibonacci numbers Fn with n > 0 of the form 2a3^X3 is 
F± = 1, F2 = 1, F3 = 2, F4 = 3, F6 = 8, and F12 = 144. 

VKOOJ: Let Fn = 2a3hX3 with ft = 2c3dfc and (fc, 6) = 1. By Lemma 2, Fk = Z3 

and by Theorem 1, & = 1. If c >. 3, repeated application of Lemma l(ii) would 
show F8 = 21 is of the form 2a3^X3, which is false. If d >. 2, repeated appli-
cation of Lemma l(i) would show Fs - 34 is of the form 2a3z?X3, which is false. 
The values 0 <. o <_ 2 and 0 <_ d <. 1 give the stated solutions. 

IhtLQtim 3: The equation L2n = X3 has no solutions. 

VtiOQJi Suppose L2n = X3. Then (7) yields 

5F2
2
n + 4 = Xs . 

All solutions to this equation (mod 7) require 7JX. Then (6) shows 4|2n hence 
3|F„ by (2), so J6 E 4 (mod 9), which is impossible. 

The.on.QJfn 4' The equation Ln = X3 with (ft, 6) = 1 has only the solutions Ẑ 1 = 1 
and L_x = -1. 

^Wo£: Suppose Ln = J3 with (ft, 6) = 1. Then (2) and (7) yield 

5F2 - 4 = X6 and (6, J) = 1. (22) 

We examine (22) over the ring of integers of Q(/5). It is known that this ring 
has unique factorization, that these integers are of the general form 

|(A + B/S) 

with A E B (mod 2), and that the units are of the form ±£̂ "9 where 

e0 = |(1 + /5). 
Now (22) gives 

(/5Fn + 2)(/5Fn - 2) = Z3, 
where Z = J2. Then 

/5Fn + 2 = na3, 

where n divides both /5Fn + 2 and /5Fn - 2. Then we have n 14. But (2, Z) = 1, 
so (2, /5Fn + 2) = 1 and n is a unit. By absorbing cubes of units, we need to 
consider only n = 1, e0, and e^1. 

Co6e 1: 2 + F /5 = a3. Let a = (1/2) (A + B/~5) . Substituting this yields 
the equations 1 

2 = ~A (A2 + 155z) 

5 (3A2 + 5£2). (23) 

Then (23) shows t h a t A\l6 and \B\ <_ 1, from which A = 1 and £ = ±1 a r e t he only 
s o l u t i o n s , y i e l d i n g Fn = ±1 and, f i n a l l y , L1 = 1 and L_x = - 1 . 

Ca6£ 2: 2 + Fn/5 = e 0 a 3 . Le t a = (1 /2) (A + S/5) w i th 4 E S (mod 2 ) , which 
y i e l d s 

2 = ~ ( A 3 -I- 15A2B + 15^52 + 25B3) 

and 
^ W 3 + 3A2S + 15AB2 + 5 5 3 ) . 
16 N 
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Then 
4(2 - Fn) = BOA2 + 5B2) = 4 (mod 8 ) , 

because 2\Fn s i n c e (n9 6) = 1. This congruence has no s o l u t i o n s wi th A = B 
(mod 2 ) . 

Co6_e_3: 2 + Fn/5 = e j ^ a 3 . Not ing e " 1 = (1 /2) ( 1 - / 5 ) , we argue a s in Case 
2 s u s i n g i n s t e a d 

4(2 + Fn) = -BOA1 + 5B2) = 4 (mod 8 ) , 
which has no solutions with A E B (mod 2). 

Tke.on.QJfn 5: The set of Lucas numbers Ln with n > 0 of the form 2aX3 are £x = 1 
and L3 = 4 . 

PJWO&: Let Ln = 2aJ3 with n = 3ak and (fe, 3) = 1. By Lemma 29 Lk = J3 so 
by Theorems 3 and 4, /c = 1. If £ 2. 2, then Lemma 2(ii) would show L3 = 76 was 
of the form 2aX3

 s which is false. 

Rmctfik: The set of Lucas numbers of the form 2a3&J3 leads to consideration of 
the equation X3 = Y2 + .18. The only solutions to this equation are (3, ±3), 
but the available proofs (see [l]and [3]) are complicated. General methods fox-
solving the equation X3 = Y2 + K for fixed K are given in [1], [4], and [5]. 
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ABSTRACT 

It is shown that the number of states in a class of serial production or 
service systems with N servers is the (27V - l)st Fibonacci number. This has 
proved useful in designing efficient systems. 
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