THE DECIMAL EXPANSION OF $1 / 89$ AND RELATED RESULTS

CALVIN T. LONG
Washington State University, Pullman, WA 99164
One of the more bizarre and unexpected results concerning the Fibonacci sequence is the fact that

$$
\frac{1}{89}=.0112358
$$

21
34
55
89
144
233
$=\sum_{i=1}^{\infty} \frac{F_{i-1}}{10^{i}}$,
where F_{i} denotes the i th Fibonacci number. The result follows immediately from Binet's formula, as do the equations
and

$$
\begin{align*}
\frac{19}{89} & =\sum_{i=1}^{\infty} \frac{L_{i-1}}{10^{i}} \tag{2}\\
\frac{1}{109} & =\sum_{i=1}^{\infty} \frac{E_{i-1}}{(-10)^{i}} \tag{3}\\
-\frac{21}{109} & =\sum_{i=1}^{\infty} \frac{L_{i-1}}{(-10)^{i}} . \tag{4}
\end{align*}
$$

where L_{i} denotes the i th Lucas numbers. It is interesting that all these results can be obtained from the following unusual identity, which is easily proved by mathematical induction.
Theorem 1: Let a, b, c, d, and B be integers. Let $\left\{\mu_{n}\right\}$ be the sequence defined by the recurrence $\mu_{0}=c, \mu_{1}=d, \mu_{n+2}=a \mu_{n+1}+b \mu_{n}$ for all $n \geq 2$. Let m and N be integers defined by the equations

$$
B^{2}=m+B a+b \text { and } N=c m+d B+b c .
$$

Then

$$
\begin{equation*}
B^{n} N=m \sum_{i=1}^{n+1} B^{n+1-i} \mu_{i-1}+B \mu_{n+1}+b \mu_{n} \tag{5}
\end{equation*}
$$

for all $n \geq 0$. Also, $N \equiv 0(\bmod B)$.
Proof: The result is clearly true for $n=0$, since it then reduces to the equation

$$
N=c m+d B+b c
$$

of the hypotheses. Assume that

$$
B^{k_{N}}=m \sum_{i=1}^{k+1} B^{k+1-i} \mu_{i-1}+B \mu_{k+1}+b \mu_{k}
$$

Then

$$
B^{k+1} N=m \sum_{i=1}^{k+1} B^{k+2-i} \mu_{i-1}+B^{2} \mu_{k+1}+B b \mu_{k}
$$

$$
\begin{aligned}
& =m \sum_{i=1}^{k+1} B^{k+2-i} \mu_{i-1}+(m+B a+b) \mu_{k+1}+B b \mu_{k} \\
& =m \sum_{i=1}^{k+2} B^{k+2-i} \mu_{i-1}+B\left(\alpha \mu_{k+1}+b \mu_{k}\right)+b \mu_{k+1} \\
& =m \sum_{i=1}^{k+2} B^{k+2-i} \mu_{\mu_{-1}}+B \mu_{k+2}+b \mu_{k+1} .
\end{aligned}
$$

This completes the induction. Finally, to see that $N \equiv 0(\bmod B)$, we have only to note that
$N=c m+d B+b c=c\left(B^{2}-B a-b\right)+d B+b c=c B^{2}-c a B+d B \equiv 0(\bmod B)$.
Now, it is well known that the terms of the sequence defined in Theorem 1 are given by

$$
\begin{equation*}
\mu_{n}=\left(\frac{c}{2}+\frac{2 a-c}{\sqrt{a^{2}+4 b}}\right)\left(\frac{a+\sqrt{a^{2}+4 b}}{2}\right)^{n}+\left(\frac{c}{2}-\frac{2 d-c}{\sqrt{a^{2}+4 b}}\right)\left(\frac{a-\sqrt{a^{2}+4 b}}{2}\right)^{n} \tag{6}
\end{equation*}
$$

Thus it follows from (5) that

$$
\begin{equation*}
\frac{N}{B m}=\sum_{i=1}^{n+1} \frac{\mu_{i-1}}{B^{i}}+\frac{B \mu_{n+1}+b \mu_{n}}{m B^{n+1}}=\sum_{i=1}^{\infty} \frac{\mu_{i-1}}{B^{i}} \tag{7}
\end{equation*}
$$

provided that the remainder term tends to 0 as n tends to infinity, and a sufficient condition for this is that

$$
\left|\frac{a+\sqrt{a^{2}+4 b}}{2 B}\right|<1 \text { and }\left|\frac{a-\sqrt{a^{2}+4 b}}{2 B}\right|<1
$$

Thus we have proved the following theorem.
Theorem 2: If a, b, c, d, m, N, and B are integers, with m and N as defined above and if

$$
\left|\frac{a+\sqrt{a^{2}+4 b}}{2 B}\right|<1 \text { and }\left|\frac{a-\sqrt{a^{2}+4 b}}{2 B}\right|<1
$$

then

$$
\begin{equation*}
\frac{N}{B m}=\sum_{i=1}^{\infty} \frac{\mu_{i-1}}{B^{i}} \tag{8}
\end{equation*}
$$

Of course, equations (1)-(4) all follow from (8) by particular choices of a, b, c, and d. To obtain (2), for example, we set $c=2, a=b=d=1$, and $B=10$. It then follows that
and

$$
\begin{aligned}
m & =B^{2}-B a-b=100-10-1=89 \\
N & =c m+d B+b c=178+10+2=190 \\
\frac{19}{89} & =\frac{190}{10 \cdot 89}=\frac{N}{B m}=\sum_{i=1}^{\infty} \frac{L_{i-1}}{10^{i}} \text { as claimed. }
\end{aligned}
$$

To obtain (3), we set $c=0, a=b=d=1$, and $B=-10$. Then

$$
\begin{aligned}
& m=B^{2}-B a-b=100+10-1=109 \\
& N=c m+d B+b c=-10
\end{aligned}
$$

and

$$
\frac{N}{B m}=\frac{-10}{-10 \cdot 109}=\frac{1}{109}=\sum_{i=1}^{\infty} \frac{F_{i-1}}{(-10)^{i}} \text { as indicated. }
$$

Finally, we note that interesting results can be obtained by setting B equal to a power of 10 . For example, if $B=10^{h}$ for some integer $h, c=0$, and $a=$ $b=d=1$,

$$
m=10^{2 h}-10^{h}-1, N=10^{h}
$$

and (8) reduces to

$$
\begin{equation*}
\frac{1}{10^{2 h}-10^{h}-1}=\sum_{i=1}^{\infty} \frac{F_{i-1}}{10^{h i}} \tag{9}
\end{equation*}
$$

For successive values of h this gives

$$
\begin{equation*}
\frac{1}{89}=\sum_{i=1}^{\infty} \frac{F_{i-1}}{10^{i}} \tag{10}
\end{equation*}
$$

as we already know,

$$
\begin{align*}
\frac{1}{9899} & =\sum_{i=1}^{\infty} \frac{F_{i-1}}{10^{2 i}} \tag{11}\\
& =.000101020305081321 \ldots \\
\frac{1}{998999} & =\sum_{i=1}^{\infty} \frac{F_{i-1}}{10^{3 i}} \tag{12}\\
& =.000001001002003005008013 \ldots
\end{align*}
$$

and so on. In case $B=(-10)^{h}$ for successive values of $h, c=0$, and $a=b=d=$ l, we obtain

$$
\begin{align*}
& \frac{1}{109}=\sum_{i=1}^{\infty} \frac{F_{i-1}}{(-10)^{i}}, \tag{13}\\
& \frac{1}{10099}=\sum_{i=1}^{\infty} \frac{F_{i-1}}{(-100)^{i}}, \tag{14}\\
& \frac{1}{1000999}=\sum_{i=1}^{\infty} \frac{F_{i-1}}{(-1000)^{i}}, \tag{15}
\end{align*}
$$

and so on. Other fractions corresponding to (2) and (3) above are

$$
\frac{19}{89}, \frac{199}{9899}, \frac{1999}{998999}, \ldots
$$

and

$$
-\frac{21}{109},-\frac{201}{10099},-\frac{2001}{1000999}, \ldots .
$$

