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PROBLEMS PROPOSED IN THIS ISSUE 

H-327 Proposed by James F. Peters, St. John's University, Collegeville, MN 

The sequence 

1,3,4,6,8,9,11,12,14,16,17,19,21,22,24,25,27,29,30,32,34,35, ... 

was introduced by D. E. Thoro [Advanced Problem H-12, The Fibonacci Quarterly 1 
(1963):54]. Dubbed "A curious sequence," the following is a slightly modified 
version of the defining relation for this sequence suggested by the Editor {The 
Fibonacci Quarterly 1 (1963):50): 

If 
T0 = 1, T± = 3, T2 = 4, T3 = 6, Th = 8, T5 = 9, T& = 11, T? = 12, 

then 
TQm + k = 13m + Tk9 where k >_ 0, m = 1, 2, 3, ... . 

Assume 
F0 = 1 , ^ = 1, Fn + 1 = Fn +Fn_1 

and 
^0 = 2 s Ll = l> Ln + l = Ln + L

n-1 

and verify the following identities: 

(1) 

(2) 

(3) 

TF 2 = Fn + 1 - 2 , where n >. 6 . 

For example, 

\-z = r 6 = 11 = F 7 -
T = T - \ 9 = F •LF7 -2 ^ n Ly L 8 

e t c . 

\ - 2 - TFn_2-i = Fn> where w l 6. 
TF-2 = Fn + 1 - 2 + Ln-12> w h e r e n > 1 5 ' 

• 2 

- 2 

H-328 Proposed by Verner E. Hoggatt, Jr. 

Let 0 be a positive irrational number such that 1/9 + 1/0J+1 = 1 (j ̂  1 an 
integer) Further, let 

[«6], Bn = [ndj+1l9 and Cn = [nd*]. 

Prove: (a) An + 1 - 5n 

= 2 

=1 Qn ± Ck for any & > 0) 

(a) 

(b) 

Ac.+ 

AC„+1 

^m + 1 

An 
1 = 

~ AC 
~ A-m 
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(c) Bn - n is the number of Ajrs less than Bn. 

H-329 Proposed by Leonard Carlitz, Duke University, Durham, NC 

Show that, for s and t nonnegative integers, 

u ; e ^kl\s)\t) \ kl(s - k)\(t - k)\ ' 

More generally, show that 

(2) * ? H \ a At) = ? « r - * ) m \ *c ) 
and 

(3) ^EfeKJV t j = T, snt-k)i( k J -

SOLUTIONS 

Determi ned 

H-302 Proposed by George Berzsenyi, Lamar University, Beaumont, TX 
(Vol. 17, No. 3, October 1979) 

Let c be a constant and define the sequence <an)> by a0 = 1, ax = 2, and aM 

^an-i + can-2 ^or n — "̂ Determine the sequence (bny for which 

*-£(*>*' 
Solution by the proposer. 

n / \ 
The equation an = /^ \T"Pk determines the sequence <(£>n> uniquely as it is 

fc = o W 

easily seen by letting n = 0, 1, 2, ... in succession and solving the resulting 
equalities recursively for b ,b , b , ... . The first few values are thus found 
to be 

bQ = 1, Z?1 = 1, ib2 = <? + l,i3 = c + 1, 2^ = (G + l)2, ... . 

We will prove that the sequence <(£>n> defined by b2n =b2n+1 - (c + l)n satisfies 
the given equation and envoke its unicity to solve the problem. 

The generating functions A(x) and B(x) for the sequences <an> and <2?n>, re-
spectively, are easily shown to be 

A(x) = — and B(x) = 1 + X _ > 
1 

Therefore, utilizing Hoggattfs approach [The Fibonacci Quarterly 9 (1971):122], 
one finds 

1 + X 

„.„ fc.0v/ n,o 1 -(7—j) - e (r^) 

V, 
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implying the desired relationship between the sequences <an> and <Z>n>. 

Also solved by P. Bruckman, P. Byrd, D. Russell, and A* Shannon. 

Zeta 

H-303 Proposed by Paul Bruckman, Concord, CA 
(Vol. 17, No. 3, October 1979) 

If 0 < s < 1, and n is any positive integer9 let 

(1) Hn(s) = X > - * 5 

and 

(2) B„Ce) = Y~^ " H«(s)* 
Prove that lim 6w(s) exists, and find this limit, 

tt-*oo 

Solution by the proposer. 

The following is Formula 23.2.9 in Handbook of Mathematical Functions, ed. 
by M. Abramowitz and I. A. Stegun. Ninth Printing* (Washington, B.C.: National 
Bureau of Standards, Nov. 1970 [with corrections])s p. 807s 

£(s) = L k~8 + (0 - D"1^1"8 - e/" 2 J&Ufc, w = 1,2, .....; s * 1, 
fc-i ^ ^8 + 1 Re(s) > 0, 

(3) 

where £ is the Riemann zeta function. If we let 

* 00 

(4) • j„(a) = / ^ J ^ l ^ , 

we see that formula (3) reduces to 

(5) -£(*) = 6n(s) + sJn(s). 

Note from (4) that In (s) > 0. Moreover, 

r , N . f°° dx 1 

Hence, lim sln(s) = lim n~8 = 0. We thus see from (5) that 

(6) lim Qn(s) = -C(e). 
n->oo 

Since £(s) is defined for 0 < s < 1, this is the solution to the problem. 

Like Fibonacci-11ke Sum 

H-305 Proposed by Martin Schechter, Swarthmore College, Swarthmore, PA 
(Vol. 17, No. 3, October 1979) 

For fixed positive integers m and n, define a Fibonacci-like sequence as 
follows: / 

I mSk_1 + Sk_2 if k is even, 
S± = 1, S2 = m, Sk = < 

I nSk_1 + Sk_2 if fc is odd. 

(Note that for m = n = 1, one obtains the Fibonacci numbers.) 
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(a) Show the Fibonacci-like property holds that if j divides k then Sj di-
vides Sk and in fact that (Sq9 Sr) = S, . where ( , ) = g.c.d. 

(b) Show that the sequences obtained 

when [m = 1, n = 4] and when [m = 1, n = 8], 

respectively, have only the element 1 in common. 

Partial solution by the proposer. 

(a) It is convenient first to define a sequence of polynomials {Sfe}", where 
Qk is a polynomial of k commuting variables, as follows: 

QQ = 1, ei(a1) = a1$ 

and 
Qk(a19 ...... ak) = akQk„1(a1> ...» ak-0 + Qk-i(ai> •••» ak-i^ -
It is easy to show by induction that for j = 1, ...,/c-l, §k has the 
expansion: 

Qk(al9 ...,. ak) = Qc<al9 .... ad)Qk_j(aj+l9 ..... afc) 

- fy.^a,. ..., V i ^ - i - i ^ + 2' .... afc). 

Note that 5fc = Qk_1(m9 n9 m9 n, ...) 

fc - 1 

Associated to 57< is the sequence 3^, which is obtained by interchanging 
the roles of m and n. The sequences 5^ and Sk are easily shown to sat-
isfy the relations: 

Sk - S^ if k is odd, 

nSk - Tn8k if k is even. 

Note that if j is odd, 5j = (mn + !)#;•_ 2 + nSg-za 

It follows from this equation, by induction, that if j' is odd, then 
(Sj, n) = 1. It is also clear that for any j, (Ŝ -, S3- + 1) = 1. 

Using the above polynomials, we may readily establish: 

Sk = 
sj + isk-3

m + sjSk-j-i i f 3 i s e v e n > 

SJ + lSk-3 + SjSk-3-l i f <?" 1 S ° d d ° 
An easy i n d u c t i o n argument now shows t h a t j\k i m p l i e s Sj\Sk. 

F i n a l l y , an i n d i r e c t argument u s ing i n d u c t i o n shows t h a t 

(Sq , Sr) = 5 ^ r ) . 

LdtC Acknowledgment: H-281 so lved Jby J . Shall it-9 H-283 so lved Jby J . La Grange. 


