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ABSTRACT 

It has long been known that there exists a perfect magic cube of order n 
where n £ 3, 59 75 2m, and km with m odd and m >_ 1. That they do not exist for 
orders 2, 3, and 4 is not difficult to show. Recently, several authors have 
constructed perfect magic cubes of order 7. We shall give a method for con-
structing perfect magic cubes of orders n - km with m odd and m _> 7. 

?. INTRODUCTION 

A magic square of order n is an nx n arrangement of the integers 1,2, . „., 
n2 so that the sum of the integers in every row, column and the two main diag-
onals is n(n2+ 1)12% the magic sum. Magic squares of orders 5 and 6 are shown 
in Figure 1. 
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It is a well-known and long established fact that there exists a magic square 
of every order n, n ^ 2. For details of these constructions, the reader is re-
ferred to W. S. Andrews [2], Maurice Kraitchik [13], and W. W. Rouse Ball [6]. 

We can extend the concept of magic squares into three dimensions. A magic 
cube of order n is an nxnxn arrangement of the integers 1,2, ..., n3 so that 
the sum of the integers in every row, column, file and space diagonal (of which 
there are four) is n(n3 + I)/2i the magic sum. A magic cube of order 3 is ex-
hibited in Figure 2. 

10 26 6 23 3 16 9 13 20 
24 1 17 7 14 21 11 27 4 
8 15 19 12 25 5 22 2 18 

Fig. 2 

Magic cubes can be constructed for every order n, n ^ 2 (see W. S. Andrews [2]). 
A perfect magpie cube of order n is a magic cube of order n with the additional 
property that the sum of the integers in the main diagonals of every layer par-
allel to a face of the cube is also n(n3 + l)/2. In 1939 Barkley Rosser and 
R. J. Walker [15] showed that there exists a perfect magic cube of order n, 
n ^ 3, 5, 7, 2m, or 4m, m odd. In fact, they constructed diabolic magic cubes 
of order n and showed that they exist only when n £ 3, 5, 7, 2m, or 4m, m odd. 
A diabolic (or pandiagonal) magic cube of order n is a magic cube of order n in 
which the sum of the integers in every diagonal, both broken and unbroken, is 
n(n3 + l)/2. Clearly, a diabolic magic cube is also a perfect magic cube. We 
shall prove that there do not exist perfect magic cubes of orders 3 and 4. 
These proofs are due to Lewis Myers, Jr. [9] and Richard Schroeppel [9]. Per-
fect magic cubes of order 7 are known to have been constructed by lanP, Howard, 
Richard Schroeppel, Ernst G. Straus, and Bayard E. Wynne. In this paper, we 
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shall present a construction for perfect magic cubes of orders n = km9 m odd, 
m _> 7, leaving only the orders n = 5, 12, 20, and 2m for m odd to be resolved. 
We remark here that Schroeppel has shown that if a perfect magic cube of order 
5 exists, then its center must be 63. 

2. VETW1T10NS avid CONSTRUCTIONS 
As far as possible, the definitions will be in accord with those given in 

J. Denes and A. D. Keedwell [7]. 
An nxnxn three-dimensional matrix comprising n files, each having n rows 

and n columns, is called a cubic array of order n. We shall write this array 
as A = (a^-fe), i, j, k e {1, 2, ..., n} where dijk is the element in the ith row, 
jth column, and kth. file of the array. When we write a^ + 2% j + s, k + t we mean for 
the indices i + r9 j + s, and k + t to be calculated modulo n on the residues 
J- , ^ 9 . . a , fL a 

The set of n elements {cii + i, jtk> & = 1, 2, ..., n} constitutes a column; 
{ai^ + ix* £ = 1, 2, ... , n} constitutes a row; {&£,j k + si: & = 19 2, ..., n} 
constitutes a file; and {a^ + £t j + £> fe. & = 1, 2, ..., n}, {ai + l^^ k + Si i I = 1, 
2, ..., n}, {̂ i,J- + £,k+£: • & = l', 2,'..., n} and {ai + £, J. + £s fc + £: £*=' 1, 2, ..., n] 
constitute the diagonals. Note that a diagonal is either broken or unbroken; 
being unbroken if all n of its elements lie on a straight line. The unbroken 
diagonals consist of the main diagonals, of which there are two in every layer 
parallel to a face of the cube, and the four space diagonals. 

We shall distinguish three types of layers in a cube. There are those with 
fixed row, fixed column, or fixed file. The first we shall call the CF-layers, 
the ith. CF-layer consisting of the n2 elements {a^ki 1 £ j', k <_ n}. The sec-
one are the RF-layers in which the jth RF-layer consists of the n2 elements 
{a j k : 1 <. i9 k <_ n}. And finally, the RC-layers, the kth consisting of the 
elements {a^k . 1 <_ i9 j <_ n}. 

A cubic array of order n is called a Latin cube of order n if it has n dis-
tinct elements each repeated n2 times and so arranged that in each layer paral-
lel to a face of the cube all n distinct elements appear, and each is repeated 
exactly n times in that layer. In the case when each layer parallel to.a face 
of the cube is a Latin square, we have what is called a permutation cube of 
order n. From this point on, we shall be concerned only with Latin cubes (and 
permutation cubes) based on the integers 1, 2, ..., n* 

Three Latin cubes of order n, A = {a^k) 9 B = (bijk)9
 ai*d C = {o^k)9 are 

said to be orthogonal if among the n3 ordered 3-tuples of elements (ai{J-k9 b^k9 
eijk) every distinct ordered 3-tuple involving the integers 1, 2, ...,n occurs 
exactly once. Should A9BS and C be orthogonal permutation cubes, they are said 
to form a variational cube. We shall write D = (di;]-k) where d^k - (a^-k9 b^k9 
°ijk) t o ^e t n e cube obtaineid on superimposing the Latin cubes A9 B9 and 'C and 
will denote it by D = 04, B9 C) . 

A cubic array of order n in which each of the integers 1, 2, ..., n3 occurs 
exactly once and in which the sum of the integers in every row, column, file, 
and unbroken diagonal is n{n3 + l)/2 is called a perfect magic cube. 

We shall give two methods for constructing perfect magic cubes. These 
methods form the basis on which the perfect magic cubes of order n- hm9 m odd, 
77? J> 7, of Section 3 will be constructed. 

ComtmidtlOYl ?** Let A = (a^-fc), B = (bijk)9 and C = (ci;jk) be three orthogonal 
Latin cubes of order n with the property that in each cube the sum of the inte-
gers in every row, column, file, and unbroken diagonal is n(n+ l)/2. Then the 
cube E = (eijk) where eijk = n2(aijk - 1) + n(bijk - 1) + (cijk - 1) + 1 is a per-
fect magic cube of order n. This is verified by checking that each of the in-
tegers 1,2, ..., n3 appears in E and that the sum of the integers in every row, 



1981] PERFECT MAGIC CUBES OF ORDER km 99 

column, file, and unbroken diagonal isn(n3+l)/2. It is clear that each of 
19 29 „.., n3 appears exactly once in E. We shall show that the sum of the in-
tegers in any row of E is n(n3 + l)/2. The remaining sums can be checked in a 
similar manner. 

n n 

n n n n 

~n2Y,ai.j+i.k +nY,b*.d+*>*- + L^i^.fc - E(n2 + n ) 
£ - 1 • £ - 1 . £ - 1 £ = 1 

= (n2 + n + l)(n(n + l)/2) -n(n2 + n) 

= n(n3 + l)/2. 

CoviA&LULCLtLon 2: Let A = (a^k) and 5 = fciok) be perfect magic cubes of orders 
tfz and n , respectively. Replace b^k in 5 by the cube C - (crst) where er8t -
CLvst + m3 @ijk ~ 1) • This results in a perfect magic cube E - (e ^-k) of order 
ra?3. Each of the integers 

1, 2, . . . 5 7773 , IT!3• + 1 , 7H 3 + 2 , . . . , 2T773 , 

(n3 - l)m3 + 1, (n3 - l V +2-, ..., n3m3 

appears exactly once in E\ As in the first construction, we shall show that 
the row sum in E is nm((nm)3 + l)/2; the remaining sums are similarly verified. 

nm_ m n 

• SL = 1 £ = 1 I = 1 • 

= wn(rn3 + l)/2 + w4 (n (n3 + l)/2 -- n) 

= nm((nm)3 + l)/2. 

It will be seen in Theorem 3.6 that it is not necessary that A and B should 
both be perfect magic cubes in order for E to be a perfect magic cube. 

3. VERFECT MAGIC CUBES 
The first result is stated without proof and is due to Barkley Rosser and 

R. J. Walker [15]. 

ThzoKom 3.1: There exists a perfect magic cube of order n provided n £ 3,5, 7, 
2m, or km for m odd.a 

The following three theorems are the only known nonexistence results for 
perfect magic cubes. For the first, the proof is trivial. The proof of the 
second theorem is that of Lewis Myers, Jr. (see [9]) and of the third is that 
of Richard Schroeppel (also see [9]). 

Tk&QJiem 3.2: There is no perfect magic cube of order 2.a 

ThdOKom 3.3: There is no perfect magic cube of order 3. 

V*WOfa Let A = (a^k) be a perfect magic cube of order 3; the magic sum is 
42. The following equations must all hold: 

allk + a22k + a33k = al3k + azzk + a3ik = al2k + a22k + a32k = ^ 

and allk + alzk + a13k = a31k + a3zk + a33k = 42. 

But together these imply that a2 , = 14 for k = 1, 2, and 3, a contradiction.• 
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Tk&OKQjn 3,4: There is no perfect magic cube of order 4. 

VK.OO^: Let A = ( a ^ ) be a perfect magic cube of order 4; the magic sum is 
130. 

First, we shall show that in any layer of such a cube the sum of the four 
corner elements is 130. Consider the kth RC-layer. The following equations 
must hold in A: 

allk + a12k + a13k + alhk = allk + a22k + a33fc + ahhk 

= allk + a21k + a31k + ahlk = 130, 

alhk + aZ3k + a32k + ahlk = a1Zffc + a2hk + a3htk + ahhtk 

These imply that 
flflk + ^ 2 f c + ^3fe + a^k = 1 3 0 -

and as 

then 

2fan* + ai4fe + a4ifc + a^fe> + E jLaHk = 6 ' 1 3 0 

E X > ^ = 4 - 1 3 0 > 
ailk + *H>* + a41fe + * W • 1 3 0 -

Since the same argument holds for any type of layer in the cube, we have that 
the sum of the four corner elements in any layer is 130. A similar argument 
shows that cz111 + a111( •+ ahhl + ahhh = 130. Thus we have 

<*iiv+ a i if + "mi* + a i . i = ai**i + amn + a ^ h
 + %m 

= ^ 1 1 1 ^ 1 1 4 - ^if Xf tf ' ^ 4 . 4 1 " J - J ^ ' j 

from which it follows that 

aill + aHH + ̂ 144 + a!4l + 2 K * 4 + Sin) = 260' 
and hence a^^ + ahhl = 65, Similarly, we can show that alhl + ahhl = 65. Com-
bining these two results, we have alhl - ahhh9 a contradiction.• 

Using an argument similar to that of Theorem 3.4 Schroeppel has shown that 
if there exists a perfect magic cube of order 5 its center is 63. 

For some time it was not generally known whether or not there existed a 
perfect magic cube of order 1 but when, in 1976, Martin Gardner [9] asked for 
such a cube, it appeared that they had been constructed without difficulty by 
many authors including Schroeppel, Ian P. Howard, Ernst G. Straus, and Bayard 
E. Wynne [17]. 

Tk<L0h.£m 3,5: There exists a perfect magic cube of order 7. 

VK.00^: We shall construct a variational cube of order 7 from which a per-
fect magic cube of order 7 can be obtained via Construction 1. Let the three 
cubes forming the variational cube be A9 B9 and C; the first RC-layer of each 
being shown in Figure 3. Complete A9 B9 and C using the defining relations 

a i , j , fc + i = aiok + L> bt,j,k + l = bidk + 1 
a n d %d.k + l = CM + 2> 
where the addition is modulo 7 on the residues 1, 2, ..., 7. Now, in A and B9 
exchange the integers 4 and 7 throughout each cube. The variational cube of 
order 7 now has the properties required by Construction 1 and so we can con-
struct a perfect magic cube of order 7. This can easily be checked.• 
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Fig. 3 
We shall now proceed to the main theorem. 

T/ieo-fcem 3.6: There exists a perfect magic cube of. order km for m odd and m_> 7. 

VK.OO^I We know that there exists a perfect magic cube of order m,m odd and 
m_> 7. This follows from Theorems 3.1 and 3,5. Since there does not exist a 
perfect magic cube of order 4 (Theorem 3.4), we cannot simply appeal to Con-
struction 2 and obtain the desired perfect magic cubes. However, we can use 
Construction 2 and by a suitable arrangement of cubes of order 4 obtain a per-
fect magic cube of order 4m. The construction is as follows. 

Let A = ( a ^ ) be a perfect magic cube of order m9 m odd and m J> 7. Let 
5 = (fc^k) be a cubic array of order m in which each fc^-fc is some cubic array 
Z^k of order 4 whose entries are ordered 3-tuples from the integers 1, 2,3, 4 
with every such 3-tuple appearing exactly once. The D^^ are to be chosen in 
such a way that in the cubic array B the componentwise sum of the integers in 
every row, column, file, and unbroken diagonal is (10m, 10???, 10m). It is now a 
simple matter to produce a perfect magic cube of order 4 . In D^k replace the 
3-tuple (r, s, t) by the integer 

(16(P - 1) + 4(s - 1) + (t - 1) + 1) + 64(a^ - 1). 

The cubic array E = (ê -fc) of order 4m so constructed is, by considering Con-
structions 1 and 2, a perfect magic cube. 

It remains then to determine the order 4 cubic arrays ##&. 
Consider the four Latin cubes Xl9 X29 X3, and X^ as shown in Figure 4 where 

from left to right we have the first to the fourth RC-layers. It is not dif-
ficult to check that X1, J2, and X3 are orthogonal, as are Il5 Xl9 and X4. We 
shall write X^ for the Latin cube X± in which the integers 1 and 4 have been 
exchanged as have 2 and 3. Also (X19 X2, Z 3 ) f means that the cubic array (Xl9 
Xl9 X3) has been rotated forward through 90°  so that RC-layers have become CF-
layers, CF-layers have become RC-layers, and the roles of rows and files have 
interchanged in RF-layers. 
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J i t : 3 3 2 2 1 1 4 4 4 4 1 1 2 2 3 3 
2 2 3 3 4 4 1 1 1 1 4 4 3 3 2 2 
1 1 4 4 3 3 2 2 2 2 3 3 4 4 1 1 
4 4 1 1 2 2 3 3 3 3 2 2 1 1 4 4 

Fig. 4 
We can now define the cubic arrays B i.k . 

V m + l m + l = ®m m + l m + l = & itl,m = DU9mtm = ^ 1 ' ^ 2 ' X3) '» % = 2 , . 3 , , . . , 777 - 1 
* 2 ' 2 2 ' 2 

^ 1 , 1, m = ^ 1 , m,m = ^ 1 , 1 , 1 = ^ 1 , m, 1 = ^ 1 ' X2* ^ 3 ) 

^ 2 , 2 , m - 1 = ^ 2 , m - 1 , m - 1 = ^ 2 ' ^ 3 ' ^ P 

^ 2 , 2, 2 = ^ 2 , m - 1 , 2 = (X2> Xh> X0 

" 3 , a , m - 2 = J ^ 3 , m - 2 , m - 2 = V^3 » ^ 1 ' ^ 2 ^ 

^ 3 , 3 , 3 = ^ 3 , m - 2 , 3 = ( ^ 3 » ^ 1 » ^ 2 ) 

Di,m + 1- i , i ~ D i9m-+l-i, m + l - i = ^ . i . m + l - i = ®i,iti = t ^ l ' ^ 2 » ^ 3 ) » 

t = 4 , 5 , 772 + 3 

Ui,m + l - i , i ^ itm + l-iim + l - i "iti9m + l - i "it i, i ^ 1 ' ^ 2 » ^ 3 ^ » 

m + 5 772+7 
772. 

In every CF-layer of B, except for the second and third, replace the remaining 
b^'ji in each unbroken diagonal by either 

*V* - <*1» X2> J3> ° r D i ^ = <*?» J?> Jt) 
so that in each diagonal there are (77? - l)/2 arrays (X19 X29 X3) and (772 - l)/2 
arrays (X\9 X*, X^). In the second and third layers do the same but here there 
are to be only (777 - . 3) /2 of each type of array as already three arrays in each 
diagonal are determined. All remaining b^k are to be replaced by 

Dijk = (Xl» X2> X3^ ' 

We must now (verify that in this cubic array the componentwise sum of the 
integers in every row9 column, file, and unbroken diagonal is (IO772, 10772, IO777). 

Since the sum of the integers in every row, column, and file of X^ and J*, 
£ = 1, 2, 3, 4, is 10, then in B the componentwise sum of the integers in every 
row, column, and file is (IO777, IOTT?, 10m). Also, as the sum of the integers in 
every unbroken diagonal in the RC-layers and RF-layers of X^ and X^, i - 1, 2, 
3, 4, is 10, and as (X19 X29 X3)f does not occur on any of these unbroken diag-
onals in B9 then the componentwise sum of the integers in these unbroken diag-
onals of B is (IO772, IO77?, IO777) . So we now have only to check the sums on the 
unbroken diagonals of the CF-layers and the sums on the four space diagonals 
of B. 

The unbroken diagonals in the CF-layers of B are D^ll9 Bi2l9 •••» ^imm anc* 
Dimi> Di,m-it z> — • > Diim» ^ = l> 2,..., 772. Let us write Sr(D^k ) for the com-
ponentwise sum of the integers in the relevant diagonal in the pth CF-layer of 
^ijk • ^e want to show that 

m m 
][X (Z?̂ .) = ^Sr(Ditm + 1 . . d t d ) = (10772, 10777, 10772), V = 1, 2 , 3, 4. 

j-1 J-l 
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If i + 2S 3, then 

m 

5 X ( 0 W ) =EL^±srax1, x2, x3)) + !"-i-Lsr«x*9 x*9 x*))+sP«x19x29xsy) 
j - i 

7 7 7 — 1 7?? — 1 

•(8, 4, 12) + 1(129 16, 8) + (10, 10, 10) when r = 1 

(12, 4, 8) + m ~ 1(8, 16, 12) + (10, 10, 10) when v = 2 

(12, 16, 12) + m ~ 1 (8, 4, 8) + (10, 10, 10) when r = 3 

(8, 16, 8) + m ~ 1(12, 4, 12) + (10, 10, 10) when r = 4 

77? 

77? 

777 

2 
_ 
2 
-
2 
-

1 

1 

i 

Also, 

(10777 , 10777, 10777) . 

X X ( £ 2 ^ ) = 2 L ^ ^ ((*!> J 2 , * 3 » + ^ ^ ( ( * ? 9 *?* X*3))+SP«X29 X,, Xx)) 
J - l 

+ 5 r ( (Z*, J 3 , J*)) + 5 , ( ( Z l f X29 J 3 ) f ) 

^-=-^-(8, 4, 12) + ^=-^-(12, 16, 8) + (4, 8, 8) + (16, 12, 12) 
+ (10, 10, 10) when r = 1 
+ (4, 12, 12) + (16, 8, 8) 

+ (10, 10, 10) when r = 2 
+ (16, 8, 12) + (4, 12, 8) 

+ (10, 10, 10) when r = 3 
+ (16, 12, 8) + (4, 8, 12) 

+ (10, 10, 10) when r = 4 

2 _ 3 - ( 1 2 , 4, 8) + ^ ~ ^ ( 8 9 16, 12) + (4, 12, 12) + (16, 8, 8) 

2 - y l ( i 2 , 16, 12) + 2 L _ 2 ( 8 , 4, 8) + (16, 8, 12) + (4, 12, 8) 

^ - y - ^ ( 8 , 16, 8) +2L^_3( i2 , 4, 12) + (16, 12, 8) + (4, 8, 12) 

(IO777, IO777, l O m ) 
and 

777 - 3 r 7 7 7 — 3 ^ ( U 1 $ x29 x3)) + ~ - ^ 2 , ( ( z t 5 *?. x*))'+52.(u3, x15 x2)) 

+ s„(a*, x*5 xp) +s2 >(a1 , *2, x3)o 
+ (12, 8, 4) + (8, 12, 1( 
+ (10, 10, 10) when r = 1 
+ (8, 12, 4) + (12, 8, 16) 
+ (10, 10, 10) when r = 2 

'+ (12, 12, 16) + (8, 8, 4) 
+ (10, 10, 10) when r = 3 
+ (8, 8, 16) + (12, 12, 4) 
+ (10, 10,. 10) when r = 4 

~^-(S9 4, 12) +^L=-^(12, 16, 8) + (12, 8, 4) + (8, 12, 16) 

2 - y ^ ( 1 2 , 4, 8) + 2 L _ 3 ( 8 , 16, 12) + (8, 12, 4) + (12, 8, 16) 

2 - ^ ( 1 2 , 16, 12) + 2 L _ 3 ( 8 , 4, 8) + (12, 12, 16) + (8, 8, 4) 

^ - 3 - ^ ( 8 , 16, 8) + ^ — - 1 ( 1 2 , 4, 12) + (8, 8, 16) + (12, 12, 4) 

(10777 , 10772, 10 /77 ) , 
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Similarly, one can check that 

m 

HSr(Vi,m+l-j,j) = (10W, 10/72, 10/72) 

and so the componentwise sum of the integers in the unbroken diagonals in the 
CF-layers of B is (10/77, 10/72, 10/72). 

The four space diagonals of B axe 

Diii> l = X» 2' •••» m' ^ . m + i-i,*' i = 1. 2, ..., TTZ; 

^w+l-£,t,£» "̂  = ^ » 2> •'•» m> ^m + l-i,m+l-i, i* ^ = 1» 2, ..., 772. 
Write SiDtjk) to be the sum of the integers in the relevant space diagonal of 
D1 J j, . We want to show that 

m m m m 

t = 1 £=* 1 •£ = 1 i=l 

= (10777, 10777, 10/72). 

Consider each of the space diagonals in turn. 

m 

Y,s<Pm) = sax1, x2, x3)) + sax2, xk, xx)) + sax3, xlt xz)) 
+ <n-^-s«x1, x2, x3)) +?L^-s«x*, x*, x*3)) 

= ( 6 , 10, 14) + (10 , 14, 6) + (14 , 6 , 10) + m ~ 3 ( 6 , 10, 14) 

+ 2 - ^ ( 1 4 , 10, 6) 
= (10m, 10m, 10m) 

Y,s(Pi,m + i-i,i) - S({Xlt X2, X 3 ) ) + S«X2, X„, Z x ) ) + 5 ( ( Z 3 , Xlt X2)) 

+ 2 - Z _ 3 S f ( ( j 1 , j 2 > j 3 ) ) ^ . ^ ^ - ^ ( ( j * , j * , j * ) ) 

= (14 , 10, 6) + (10 , 6 , 14) + ( 6 , 14, 10) + 2 L-=-5-(14, 10, 6) 

+ ^ - ^ • ( 6 , 1 0 , 1 4 ) 
= (10m, 10m, 10m) 

m 

T,s^Di.r,+i-i,m+i.i) = s«xlt x2, x3)) + saxf, x3, x?)) + scat, J*, x%» 
+ ~^-S{{X1, X2, Z 3 ) ) + ^ - A s ( ( X * , X*, X*)) 

= (14 , 10, 14) + (10 , 14, 6) + ( 6 , 6 , 10) + m ~ 3 ( 1 4 , 10, 14) 

+ 2 - = - ^ ( 6 , 10, 6) 
= (10m, 10m, 10m) 
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m 

i-1 

= (6, 10, 6) + (10, 6, 14) + (14,-14, 10) + —-^-(6, 10, 6) 

+ 24^(14, 10, 14) 
= (10m, 10m, 10m). 

Thus we have found a way of arranging order 4 cubic arrays, in which each 
of the ordered 3-tuples on 1, 2, 3, 4 appears exactly once, in an order m cubic 
array B so that in B the componentwise sum of the integers in every row, col-
umn, file, and unbroken diagonal is (10ms 10ms 10m). Therefore, as previously 
stated, we can construct a perfect magic cube of order 4m for m odd and m >. 7,D 

4. EKTEHSIOMS AW fROBLEMS 
We know now that there exists a perfect magic cube of order n provided n f 

3, 4, 5, 12, 20, 2m, for m odd, and that they do not exist when n = 2, 3, or 4. 
So the question remaining is whether or not there exist perfect magic cubes of 
orders n = 5, 12, 20, and 2ms f or m odd and m >_ 3. It seems probable that such 
cubes of orders 12 and 20 can be constructed along the lines of Theorem 3.6 us-
ing cubic arrays of orders 3 and 5 that are close to being perfect magic cubes 
and arranging in them order 4 cubic arrays composed from X^ and X% 9 i - 1, 2, 
3, 4, as before. It may also be possible that by arranging order 2 cubic arrays 
in order m cubic arrays, m odd and m _> 7, one can obtain perfect magic cubes of 
order 2m. As for order 5, all we know is that if there is a perfect magic cube 
of order 5 its center is 63. 

A more recent problem in the study of magic cubes is that of extending them 
into k dimensions. For details on this problem and the related problem of con-
structing variational cubes in k dimensions, the reader is referred to [1], [3], 
[4], [5], [7], [8], [12], and [16]. 
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GENERATING FUNCTIONS FOR RECURRENCE RELATIONS 
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1. 1NTR0VUCTJ0N 
t • 

In a previous paper [3] the author gave explicit solutions for four recur-
rence relations. The first was a basic relation with special initial condi-
tions. The solution was shown to be related to the decompositions of the integer; 
n relative to the first m positive integers. The second basic relation then 
restricted the first so that the solution was related to the decomposition of 
n relative to a subset of the first m positive integers. Then the initial con-
ditions for both were extended to any arbitrary values. 

In the next section we shall give the generating functions for all four of 
these cases, starting with the initial condition of highest index. We also 
note the form of the function for arbitrary indices for the initial conditions. 
Finally, we give a second function that generates all the initial conditions. 

In Section 3 we give a simple example of the fourth kind of relation. We 
determine the first few terms of this relation and then compute its generating 
function. Then we consider relations given in [1] and [2] and determine their 
generating functions. 

2. THE BASIC GENERATING FUNCTION 
We shall consider a recurrence relation defined by 

m 
Gt = JlrsGt-sl Gi-m>'--» Go a r b i t r a r y . 

8-1 

For notation, we shall refer to its generating function as Rm(G;x). The first 
term generated will be G0. Later, we shall give a second function that will 
start with G1_m. 

Tke.0A.2Jfn 2.1» The generating function for the recurrence relation Gn is as fol-
lows: 

R„(G; x) = L + £ £ *,<?„_.*» )(l.- E * . * ' ) 1 -

To prove that this does generate Gn, we set this equal to /~J Gnxn and then 


