Finally, we note the following interesting fact. Since
and

$$
a_{0}(r)= \pm \frac{1}{r+1}
$$

$$
S_{0}(n)=n,
$$

it follows from (2) that

$$
S_{r}(n)=S_{1}(n) P_{r-1}(n)
$$

where $P_{r-1}(n)$ is a polynomial in n of degree $r-1$.

REFERENCES

1. S. Barnard \& J. M. Child. Higher Algebra. New York: Macmillan, 1936.
2. R. Courant. Differential and Integral Calculus. New York: Wiley, 1937.
3. C. Jordan. Calculus of Finite Differences. New York: Chelsea, 1947.

A NOTE ON THE POLYGONAL NUMBERS

SHIRO ANDO

Hosei University, Koganei-shi, 184 Japan

1. INTRODUCTION

Polygonal numbers of order $k(k=3,4,5, \ldots)$ are the numbers

$$
\begin{equation*}
P_{n, k}=\frac{1}{2}\left[(k-2) n^{2}-(k-4) n\right] \quad(n=1,2,3, \ldots) . \tag{1}
\end{equation*}
$$

If $k=4$, they are reduced to the square numbers. It is clear that there are an infinite number of square numbers which are at a time the sum and difference and the product of such numbers, from the identity

$$
\begin{aligned}
\left(4 m^{2}+1\right)^{2} & =(4 m)^{2}+\left(4 m^{2}-1\right)^{2} \\
& =\left(8 m^{4}+4 m^{2}+1\right)^{2}-\left(8 m^{4}+4 m^{2}\right)^{2}
\end{aligned}
$$

and since there are an infinite number of composite numbers of the form $4 m^{2}+1$ (for example, if $m=5 j+1,4 m^{2}+1$ is divisible by 5).

Sierpinski [1] proved that there are an infinite number of triangular numbers ($k=3$) which are at a time the sum and the difference and the product of such numbers.

For $k=5$, Hansen [2] proved that there are an infinite number of $P_{n, 5}$ that can be expressed as the sum and the difference of such numbers.

0 'Donnell [3] proved a similar result for $k=6$, and conjectured that there will be a similar result for the general case.

In this paper it will be shown that their method of proof is valid for the general case, proving the following theorem.
Theorem: Let a and b be given integers such that $a \neq 0$ and $a \equiv b(\bmod 2)$, and let

$$
\begin{equation*}
A_{n}=\frac{1}{2}\left(a n^{2}+b n\right) \quad(n=1,2,3, \ldots) \tag{2}
\end{equation*}
$$

There are an infinite number of A_{n} 's which can be expressed as the sum and the difference of the numbers of the same type.

2. PROOF OF THE THEOREM

If $a<0$, we obtain a set of integers whose elements are the negatives of the elements in the set obtained by using $-a$ and $-b$ instead of a and b. Hence we can assume $a>0$ in the following.

Let

$$
\begin{equation*}
B_{n}=A_{n}-A_{n-r}=\frac{1}{2}\left[a\left(2 n r-r^{2}\right)+b r\right], \tag{3}
\end{equation*}
$$

where n and r are positive integers, $n>r$, and r is odd unless a is even.
Lemma 1: For

$$
\begin{equation*}
m=\alpha r s+r, \tag{4}
\end{equation*}
$$

where s is a positive integer such that

$$
\begin{equation*}
a^{2} s+2 a>-\frac{b}{r} \tag{5}
\end{equation*}
$$

the equation

$$
\begin{equation*}
A_{m}=B_{n}=A_{n}-A_{n-r} \tag{6}
\end{equation*}
$$

is satisfied by the integer

$$
\begin{equation*}
n=\frac{1}{2} s\left[r\left(a^{2} s+2 \alpha\right)+b\right]+r \tag{7}
\end{equation*}
$$

Proo6: Solving

$$
\frac{1}{2}\left[a r^{2}(a s+1)^{2}+b r(a s+1)\right]=\frac{1}{2}\left[a\left(2 n r-r^{2}\right)+b r\right]
$$

for n, we have (7).
For any integer $c, c^{2} \equiv c(\bmod 2)$, so that

$$
\begin{aligned}
s\left[r\left(a^{2} s+2 a\right)+b\right] & =r a^{2} s^{2}+2 a r s+b s \equiv r a s+a s \\
& =(r+1) a s \equiv 0(\bmod 2),
\end{aligned}
$$

by the conditions for r and a, which ensures that n is an integer, and the lemma is proved.

For m and n of Lemma 1 ,

$$
\begin{equation*}
A_{n}=A_{m}+A_{n-r} \tag{8}
\end{equation*}
$$

In order to find a number of this type which is equal to some B_{p}, let $s=$ art, for any positive integer t such that

$$
\begin{equation*}
a^{3} r^{2} t+b \geq 0 \tag{9}
\end{equation*}
$$

Then (5) is satisfied and from (4) and (7) we have

$$
\begin{equation*}
m=a^{2} r^{2} t+r, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
u=\frac{1}{2} t\left[r\left(a^{3} r t+2 a\right)+b\right] \tag{12}
\end{equation*}
$$

is an integer such that $u \geq s$ by the condition (9).

From Lemma 1, using u in place of s, for the integer

$$
\begin{equation*}
p=\frac{1}{2} u\left[r\left(a^{2} u+2 a\right)+b\right]+r \tag{13}
\end{equation*}
$$

we have $A_{n}=B_{p}$. This equation, together with equation (8), provides the following lemma, from which we can easily establish the theorem.

Lemma 2: Let a, r, and t be positive integers, where r is odd unless a is even and the condition (9) is satisfied. Then, m, n, u, and p, which are given by (10), (11), (12), and (13), respectively, are also positive integers, and

$$
A_{n}=A_{m}+A_{n-r}=A_{p}-A_{p-r}
$$

3. THE CASE OF POLYGONAL NUMBERS

The result for the polygonal numbers of order k is given for

$$
a=k-2, \quad b=-(k-4)
$$

in Lemma 2. In this case, condition (9) is always satisfied for any positive integer t.
Example 1: For $r=1$, we have

$$
P_{n, k}=P_{m, k}+P_{n-1, k}=P_{p, k}-P_{p-1, k}
$$

where

$$
\begin{aligned}
& m=(k-2)^{2} t+1 \\
& n=(k-2) u+1
\end{aligned}
$$

$$
p=\frac{1}{2} u\left[(k-2)^{2} u+k\right]+1
$$

for

$$
u=\frac{1}{2} t\left[(k-2)^{3} t+k\right]
$$

Let $T_{n}, Q_{n}, P_{n}, H_{n}$, and S_{n} denote $P_{n, k}$ for $k=3,4,5,6$, and 7 , respectively. Then we have

$$
T_{\frac{1}{2}\left(t^{2}+3 t\right)+1}=T_{t+1}+T_{\frac{1}{2}\left(t^{2}+3 t\right)}=T_{p}-T_{p-1}
$$

where $p=\frac{1}{8}\left(t^{4}+6 t^{3}+15 t^{2}+18 t\right)+1$,

$$
Q_{8 t^{2}+4 t+1}=Q_{4 t+1}+Q_{8 t^{2}+4 t}=Q_{p}-Q_{p-1}
$$

where $p=32 t^{4}+32 t^{3}+16 t^{2}+4 t+1$,

$$
P_{\frac{1}{2}\left(81 t^{2}+15 t\right)+1}=P_{9 t+1}+P_{\frac{1}{2}\left(81 t^{2}+15 t\right)}=P_{p}-P_{p-1}
$$

where $p=\frac{1}{8}\left(6561 t^{4}+2430 t^{3}+495 t^{2}+50 t\right)+1$,

$$
H_{128 t^{2}+12 t+1}=H_{16 t+1}+H_{128 t^{2}+12 t}=H_{p}-H_{p-1}
$$

where $p=8192 t^{4}+1536 t^{3}+168 t^{2}+9 t+1$,

$$
S_{\frac{1}{2}\left(625 t^{2}+35 t\right)+1}=S_{25 t+1}+S_{\frac{1}{2}\left(625 t^{2}+35 t\right)}=S_{p}-S_{p-1}
$$

where $p=\frac{1}{8}\left(390625 t^{4}+43750 t^{3}+2975 t^{2}+98 t\right)+1$.

Example 2: For the case $r=3, t=1$, we have

$$
\begin{aligned}
& m=9(k-2)^{2}+3, \\
& n=3(k-2) u+3,
\end{aligned}
$$

and

$$
p=\frac{1}{2} u\left[3(k-2)^{2} u+5 k-8\right]+3
$$

where

$$
u=\frac{1}{2}\left(9 k^{3}-54 k^{2}+113 k-80\right)
$$

For $k=6$, it gives

$$
H_{3591}=H_{147}+H_{3588}=H_{2148916}-H_{2148913},
$$

which is not covered by Theorem 2 of 0 'Donne11 [3].
The generalized relation in Lemma 2, however, does not yield all such relations. For instance, the relation

$$
H_{25}=H_{10}+H_{23}=H_{307}-H_{306}
$$

cannot be deduced from our Lemma 2.

4. ACKNOWLEDGMENT

The author would like to thank Professor G. E. Bergum for correcting some errors and for suggesting a few improvements to this note.

REFERENCES

1. W. Sierpinski. "Un théorème sur les nombres triangulaires." Elemente der Mathematik 23 (1968):31-32.
2. R. T. Hansen. "Arithmetic of Pentagonal Numbers." The Fibonacci Quarterly 8 (1970):83-87.
3. W. J. O'Donne11. "Two Theorems Concerning Hexagonal Numbers." The Fibonacci Quarterly 17 (1979):77-79.
