The numbers w_n have been studied by Moser and Wyman [6]. From the differential equation W'(y) = -(1 + y)W(y), we obtain the recurrence

$$w_{n+1} = -(w_n + nw_{n-1}),$$

from which the w_n are easily computed. The first few instances of (18) are

$$t_{m+1} - t_m = mt_{m-1}$$

$$t_{m+2} - 2t_{m+1} = 2\binom{m}{2}t_{m-2}$$

$$t_{m+3} - 3t_{m+2} + 2t_m = 6\binom{m}{3}t_{m-3}$$

$$t_{m+4} - 4t_{m+3} + 8t_{m+1} - 2t_m = 24\binom{m}{4}t_{m-4}$$

A natural question is: To what series does this method apply? In other words, we want to characterize those Hurwitz series f(x) for which there exist Hurwitz series h(z) and g(z), with h(0) = 1, g(0) = 0, and g'(0) = 1, such that for all $m, n \ge 0$, the coefficient of $(x^m/m!)z^n$ in h(z)f[x + g(z)] is integral.

REFERENCES

- 1. Daniel Barsky. "Analyse *p*-adique et nombres de Bell." C. R. Acad. Sci. Paris (A) 282 (1976):1257-1259.
- S. Chowla, I.N. Herstein, & W.K. Moore. "On Recursions Connected with Symmetric Groups I." Canad. J. Math. 3 (1951):328-334.
- 3. L. Comtet. Advanced Combinatorics. Boston: Reidel, 1974.
- 4. O. A. Gross. "Preferential Arrangements." Amer. Math. Monthly 69 (1962): 4-8.
- 5. A. Hurwitz. "Ueber die Entwickelungscoefficienten der lemniscatischen Functionen." Math. Annalen 51 (1899):196-226.
- 6. Leo Moser & Max Wyman. "On Solutions of $x^d = 1$ in Symmetric Groups." Canad. J. Math. 7 (1955):159-168.
- 7. Chr. Radoux. "Arithmétique des nombres de Bell et analyse p-adique." Bull. Soc. Math. de Belgique (B) 29 (1977):13-28.
- 8. Jacques Touchard. "Propriétés arithmétique de certaines nombres recurrents." Ann. Soc. Sci. Bruxelles (A) 53 (1933):21-31.
- 9. Jacques Touchard. "Nombres exponentiels et nombres de Bernoulli." Canad. J. Math. 8 (1956):305-320. *****

A QUADRATIC PROPERTY OF CERTAIN LINEARLY RECURRENT SEQUENCES

JULIO R. BASTIDA and M. J. DeLEON

Florida Atlantic University, Boca Raton, FL 33431

In [1] one of the authors proved the following result.

Let u be a real number such that u > 1, and let $\{x_n\}_{n \ge 0}$ be a sequence of nonnegative real numbers such that

$$x_{n+1} = ux_n + \sqrt{(u^2 - 1)(x_n^2 - x_0^2) + (x_1 - ux_0)^2}$$

for every $n \ge 0$. Then

144

$$x_{n+2} = 2ux_{n+1} - x_n$$

for every $n \ge 0$; and, in particular, if u, x_0 , x_1 are integers, then x_n is an integer for every $n \ge 0$.

In this note we shall show that, under certain conditions, the preceding result admits a converse.

We begin with the following general preliminary proposition.

<u>Proposition</u>: Let R be a commutative ring with unit element; let t, $u \in R$, and define a polynomial $f \in R[X, Y]$ by

$$f(X, Y) = tX^2 - 2uXY + Y^2$$

If $\{r_n\}_{n\geq 0}$ is a sequence of elements of R such that

$$r_{n+2} = 2ur_{n+1} - tr_n$$

for every $n \ge 0$, then

$$f(r_n, r_{n+1}) = t^n f(r_0, r_1)$$

for every $n \ge 0$.

<u>Proof</u>: We shall prove this result by induction. The conclusion holds identically for n = 0. Assume now that it holds for some $n \ge 0$. Then

$$\begin{split} f(r_{n+1}, r_{n+2}) &= tr_{n+1}^2 - 2ur_{n+1}r_{n+2} + r_{n+2}^2 \\ &= tr_{n+1}^2 - 2ur_{n+1}(2ur_{n+1} - tr_n) + (2ur_{n+1} - tr_n)^2 \\ &= t(tr_n^2 - 2ur_nr_{n+1} + r_{n+1}^2) \\ &= tf(r_n, r_{n+1}) \\ &= tt^n f(r_0, r_1) \\ &= t^{n+1}f(r_0, r_1), \end{split}$$

which shows that the conclusion also holds for n + 1.

This proposition can be applied in some familiar particular cases: If we take

$$R = Q$$
, $t = -1$, $u = 1/2$,

we find that the Fibonacci and Lucas sequences satisfy

$$F_{n+1}^2 - F_{n+1}F_n - F_n^2 = (-1)^n$$

$$L_{n+1}^2 - L_{n+1}L_n - L_n^2 = 5(-1)^{n+1}$$

for every $n \ge 0$. And if we take

R = Z, t = -1, u = 1,

we also find that the Pell sequence satisfies

$$P_{n+1}^2 - 2P_{n+1}P_n - P_n^2 = (-1)^n$$

for every $n \ge 0$.

We are now in a position to state and prove our result.

Theorem: Let t, u be real numbers such that

$$t^2 = 1$$
 and $u > \max(t, 0)$,

and let $\{x_n\}_{n\geq 0}$ be a sequence of real numbers such that

$$x_1 \ge \max(ux_0, (t/u)x_0, 0)$$

and satisfying

$$x_{n+2} = 2ux_{n+1} - tx_n$$

for every $n \ge 0$. We then have:

(i) $ux_{n+1} \ge max(tx_n, 0)$ for every $n \ge 0$; and

(ii)
$$x_{n+1} = ux_n + \sqrt{(u^2 - t)(x_n^2 - t^n x_0^2) + t^n(x_1 - ux_0)^2}$$
 for every $n \ge 0$.

<u>Proof</u>: We shall prove (i) by induction. Our assumptions clearly imply that the stated inequality holds when n = 0. Now suppose that $ux_{n+1} \ge \max(tx_n, 0)$ for some $n \ge 0$. As the given conditions on t, u imply that u > 0 and $u^2 > t$, we first deduce that $x_{n+1} \ge 0$, and then that

$$ux_{n+2} = u(2ux_{n+1} - tx_n)$$

= $u^2x_{n+1} + u(ux_{n+1} - tx_n) \ge u^2x_{n+1} \ge \max(tx_{n+1}, 0),$

as required.

Since $x_1 - ux_0 \ge 0$, it is clear that, in order to prove (ii), we need only consider the case where n > 0. In view of the proposition, we have

$$tx_{n-1}^2 - 2ux_{n-1}x_n + x_n^2 = t^{n-1}(tx_0^2 - 2ux_0x_1 + x_1^2)$$

Since $t^2 = 1$, we also have

$$x_{n-1}^2 - 2tux_{n-1}x_n + tx_n^2 = t^n(tx_0^2 - 2ux_0x_1 + x_1^2),$$

and hence

$$-2tux_{n-1}x_n + x_{n-1}^2 = -tx_n^2 + t^{n+1}x_0^2 - 2t^n ux_0x_1 + t^n x_1^2;$$

it then follows that

$$(ux_n - tx_{n-1})^2 = u^2 x_n^2 - 2tux_{n-1}x_n + x_{n-1}^2$$

= $u^2 x_n^2 - tx_n^2 + t^{n+1} x_0^2 + t^n x_1^2 - 2t^n ux_0 x_1^2$
= $(u^2 - t) (x_n^2 - t^n x_0^2) + t^n (x_1 - ux_0)^2$.

By virtue of (i), we now conclude that

$$\begin{aligned} x_{n+1} &= 2ux_n - tx_{n-1} \\ &= ux_n + (ux_n - tx_{n-1}) \\ &= ux_n + \sqrt{(ux_n - tx_{n-1})^2} \\ &= ux_n + \sqrt{(u^2 - t)(x_n^2 - t^n x_0^2) + t^n (x_1 - ux_0)^2}, \end{aligned}$$

which is what was needed.

Applying this theorem to the three special sequences considered above, we obtain the following formulas for every $n \ge 0$:

$$F_{n+1} = \frac{1}{2}(F_n + \sqrt{5F_n^2 + 4(-1)^n})$$

$$L_{n+1} = \frac{1}{2}(L_n + \sqrt{5L_n^2 + 20(-1)^{n+1}})$$

$$P_{n+1} = P_n + \sqrt{2P_n^2 + (-1)^n}.$$

These formulas, of course, can also be derived directly from the quadratic equalities established previously.

REFERENCE

1. J. R. Bastida. "Quadratic Properties of a Linearly Recurrent Sequence." Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory, and Computing. Winnipeg, Canada: Utilitas Mathematica, 1979.
