The numbers w_{n} have been studied by Moser and Wyman [6]. From the differential equation $W^{\prime}(y)=-(1+y) W(y)$, we obtain the recurrence

$$
w_{n+1}=-\left(w_{n}+n w_{n-1}\right),
$$

from which the w_{n} are easily computed. The first few instances of (18) are

$$
\begin{aligned}
& t_{m+1}-t_{m}=m t_{m-1} \\
& t_{m+2}-2 t_{m+1}=2\binom{m}{2} t_{m-2} \\
& t_{m+3}-3 t_{m+2}+2 t_{m}=6\binom{m}{3} t_{m-3} \\
& t_{m+4}-4 t_{m+3}+8 t_{m+1}-2 t_{m}=24\binom{m}{4} t_{m-4}
\end{aligned}
$$

A natural question is: To what series does this method apply? In other words, we want to characterize those Hurwitz series $f(x)$ for which there exist Hurwitz series $h(z)$ and $g(z)$, with $h(0)=1, g(0)=0$, and $g^{\prime}(0)=1$, such that for all $m, n \geq 0$, the coefficient of $\left(x^{m} / m!\right) z^{n}$ in $h(z) f[x+g(z)]$ is integral.

REFERENCES

1. Daniel Barsky. "Analyse p-adique et nombres de Bell." C. R. Acad. Sci. Paris (A) 282 (1976):1257-1259.
2. S. Chowla, I. N. Herstein, \&W. K. Moore. "On Recursions Connected with Symmetric Groups I." Canad. J. Math. 3 (1951):328-334.
3. L. Comtet. Advanced Combinatorics. Boston: Reide1, 1974.
4. 0. A. Gross. "Preferential Arrangements." Amer. Math. Monthly 69 (1962): 4-8.
1. A. Hurwitz. "Ueber die Entwickelungscoefficienten der lemniscatischen Functionen." Math. AnnaZen 51 (1899):196-226.
2. Leo Moser \& Max Wyman. "On Solutions of $x^{d}=1$ in Symmetric Groups." Canad. J. Math. 7 (1955):159-168.
3. Chr. Radoux. "Arithmétique des nombres de Bell et analyse p-adique." Bull. Soc. Math. de Belgique (B) 29 (1977):13-28.
4. Jacques Touchard. "Propriétés arithmétique de certaines nombres recurrents." Ann. Soc. Sci. Bruxelles (A) 53 (1933):21-31.
5. Jacques Touchard. "Nombres exponentiels et nombres de Bernoulli." Canad. J. Math. 8 (1956): 305-320.

A QUADRATIC PROPERTY OF CERTAIN LINEARLY RECURRENT SEQUENCES

JULIO R. BASTIDA and M. J. DeLEON
Florida Atlantic University, Boca Raton, FL 33431
In [1] one of the authors proved the following result.
Let u be a real number such that $u>1$, and let $\left\{x_{n}\right\}_{n \geq 0}$ be a sequence of nonnegative real numbers such that

$$
x_{n+1}=u x_{n}+\sqrt{\left(u^{2}-1\right)\left(x_{n}^{2}-x_{0}^{2}\right)+\left(x_{1}-u x_{0}\right)^{2}}
$$

for every $n \geq 0$. Then

$$
x_{n+2}=2 u x_{n+1}-x_{n}
$$

for every $n \geq 0$; and, in particular, if u, x_{0}, x_{1} are integers, then x_{n} is an integer for every $n \geq 0$ 。

In this note we shall show that, under certain conditions, the preceding result admits a converse.

We begin with the following general preliminary proposition.
Proposition: Let R be a comutative ring with unit element; let $t, u \in R$, and define a polynomial $f \in R[X, Y]$ by

$$
f(X, Y)=t X^{2}-2 u X Y+Y^{2}
$$

If $\left\{r_{n}\right\}_{n \geq 0}$ is a sequence of elements of R such that

$$
r_{n+2}=2 u r_{n+1}-t r_{n}
$$

for every $n \geq 0$, then

$$
f\left(r_{n}, r_{n+1}\right)=t^{n} f\left(r_{0}, r_{1}\right)
$$

for every $n \geq 0$.
Proof: We shall prove this result by induction. The conclusion holds identically for $n=0$. Assume now that it holds for some $n \geq 0$. Then

$$
\begin{aligned}
f\left(r_{n+1}, r_{n+2}\right) & =t r_{n+1}^{2}-2 u r_{n+1} r_{n+2}+r_{n+2}^{2} \\
& =t r_{n+1}^{2}-2 u r_{n+1}\left(2 u r_{n+1}-t r_{n}\right)+\left(2 u r_{n+1}-t r_{n}\right)^{2} \\
& =t\left(t r_{n}^{2}-2 u r_{n} r_{n+1}+r_{n+1}^{2}\right) \\
& =t f\left(r_{n}, r_{n+1}\right) \\
& =t t^{n} f\left(r_{0}, r_{1}\right) \\
& =t^{n+1} f\left(r_{0}, r_{1}\right),
\end{aligned}
$$

which shows that the conclusion also holds for $n+1$.
This proposition can be applied in some familiar particular cases:
If we take

$$
R=Q, \quad t=-1, u=1 / 2,
$$

we find that the Fibonacci and Lucas sequences satisfy

$$
\begin{aligned}
& F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}=(-1)^{n} \\
& L_{n+1}^{2}-L_{n+1} L_{n}-L_{n}^{2}=5(-1)^{n+1}
\end{aligned}
$$

for every $n \geq 0$.

$$
R=z, t=-1, u=1,
$$

we also find that the Pell sequence satisfies

$$
P_{n+1}^{2}-2 P_{n+1} P_{n}-P_{n}^{2}=(-1)^{n}
$$

for every $n \geq 0$.
We are now in a position to state and prove our result.
Theorem: Let t, u be real numbers such that

$$
t^{2}=1 \text { and } u>\max (t, 0)
$$

and let $\left\{x_{n}\right\}_{n \geq 0}$ be a sequence of real numbers such that

$$
\begin{gathered}
x_{1} \geq \max \left(u x_{0},(t / u) x_{0}, 0\right) \\
x_{n+2}=2 u x_{n+1}-t x_{n}
\end{gathered}
$$

for every $n \geq 0$. We then have:
(i) $u x_{n+1} \geq \max \left(t x_{n}, 0\right)$ for every $n \geq 0$; and
(ii) $x_{n+1}=u x_{n}+\sqrt{\left(u^{2}-t\right)\left(x_{n}^{2}-t^{n} x_{0}^{2}\right)+t^{n}\left(x_{1}-u x_{0}\right)^{2}}$ for every $n \geq 0$.

Proof: We shall prove (i) by induction. Our assumptions clearly imply that the stated inequality holds when $n=0$. Now suppose that $u x_{n+1} \geq \max \left(t x_{n}, 0\right)$ for some $n \geq 0$. As the given conditions on t, u imply that $u>0$ and $u^{2}>t$, we first deduce that $x_{n+1} \geq 0$, and then that

$$
\begin{aligned}
u x_{n+2} & =u\left(2 u x_{n+1}-t x_{n}\right) \\
& =u^{2} x_{n+1}+u\left(u x_{n+1}-t x_{n}\right) \geq u^{2} x_{n+1} \geq \max \left(t x_{n+1}, 0\right),
\end{aligned}
$$

as required.
Since $x_{1}-u x_{0} \geq 0$, it is clear that, in order to prove (ii), we need only consider the case where $n>0$. In view of the proposition, we have

$$
t x_{n-1}^{2}-2 u x_{n-1} x_{n}+x_{n}^{2}=t^{n-1}\left(t x_{0}^{2}-2 u x_{0} x_{1}+x_{1}^{2}\right) .
$$

Since $t^{2}=1$, we also have
and hence

$$
x_{n-1}^{2}-2 t u x_{n-1} x_{n}+t x_{n}^{2}=t^{n}\left(t x_{0}^{2}-2 u x_{0} x_{1}+x_{1}^{2}\right),
$$

$$
-2 t u x_{n-1} x_{n}+x_{n-1}^{2}=-t x_{n}^{2}+t^{n+1} x_{0}^{2}-2 t^{n} u x_{0} x_{1}+t^{n} x_{1}^{2}
$$

it then follows that

$$
\begin{aligned}
\left(u x_{n}-t x_{n-1}\right)^{2} & =u^{2} x_{n}^{2}-2 t u x_{n-1} x_{n}+x_{n-1}^{2} \\
& =u^{2} x_{n}^{2}-t x_{n}^{2}+t^{n+1} x_{0}^{2}+t^{n} x_{1}^{2}-2 t^{n} u x_{0} x_{1} \\
& =\left(u^{2}-t\right)\left(x_{n}^{2}-t^{n} x_{0}^{2}\right)+t^{n}\left(x_{1}-u x_{0}\right)^{2}
\end{aligned}
$$

By virtue of (i), we now conclude that

$$
\begin{aligned}
x_{n+1} & =2 u x_{n}-t x_{n-1} \\
& =u x_{n}+\left(u x_{n}-t x_{n-1}\right) \\
& =u x_{n}+\sqrt{\left(u x_{n}-t x_{n-1}\right)^{2}} \\
& =u x_{n}+\sqrt{\left(u^{2}-t\right)\left(x_{n}^{2}-t^{n} x_{0}^{2}\right)+t^{n}\left(x_{1}-u x_{0}\right)^{2}},
\end{aligned}
$$

which is what was needed.
Applying this theorem to the three special sequences considered above, we obtain the following formulas for every $n \geq 0$:

$$
\begin{aligned}
& F_{n+1}=\frac{1}{2}\left(F_{n}+\sqrt{5 F_{n}^{2}+4(-1)^{n}}\right) \\
& L_{n+1}=\frac{1}{2}\left(L_{n}+\sqrt{5 L_{n}^{2}+20(-1)^{n+1}}\right) \\
& P_{n+1}=P_{n}+\sqrt{2 P_{n}^{2}+(-1)^{n}} .
\end{aligned}
$$

These formulas, of course, can also be derived directly from the quadratic equalities established previously.

REFERENCE

1. J. R. Bastida. "Quadratic Properties of a Linearly Recurrent Sequence." Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory, and Computing. Winnipeg, Canada: Utilitas Mathematica, 1979.
