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1. 1NTR0VUCTJ0N 
t • 

In a previous paper [3] the author gave explicit solutions for four recur-
rence relations. The first was a basic relation with special initial condi-
tions. The solution was shown to be related to the decompositions of the integer; 
n relative to the first m positive integers. The second basic relation then 
restricted the first so that the solution was related to the decomposition of 
n relative to a subset of the first m positive integers. Then the initial con-
ditions for both were extended to any arbitrary values. 

In the next section we shall give the generating functions for all four of 
these cases, starting with the initial condition of highest index. We also 
note the form of the function for arbitrary indices for the initial conditions. 
Finally, we give a second function that generates all the initial conditions. 

In Section 3 we give a simple example of the fourth kind of relation. We 
determine the first few terms of this relation and then compute its generating 
function. Then we consider relations given in [1] and [2] and determine their 
generating functions. 

2. THE BASIC GENERATING FUNCTION 
We shall consider a recurrence relation defined by 

m 
Gt = JlrsGt-sl Gi-m>'--» Go a r b i t r a r y . 

8-1 

For notation, we shall refer to its generating function as Rm(G;x). The first 
term generated will be G0. Later, we shall give a second function that will 
start with G1_m. 

Tke.0A.2Jfn 2.1» The generating function for the recurrence relation Gn is as fol-
lows: 

R„(G; x) = L + £ £ *,<?„_.*» )(l.- E * . * ' ) 1 -

To prove that this does generate Gn, we set this equal to /~J Gnxn and then 
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multiply by the factor with the negative exponent. This gives 
m - 1 m oo m <*> 

Go + E £ *.<?»-.*" = £ Gs*s - £ £rEGn*s+n. 
n = l s = n + l rc = 0 s = l n = 0 

In the last summation, we replace n by n - s and transpose it to the left side 
so that 

m - 1 m m QQ OO 
G o + £ £ rsGn_sx" + £ £rsGn.8x» = £<?„*». 

n = 1 s • n + 1 B - 1 n = s n = 0 

We now break the second sum at n = m and then interchange the orders of summa-
tion. We have 

m-1 m _m_ n_ oo m 

£ 2>, 
n = 1 s « n + l 

rn - x m m n oo m oo 
Go + £ £ r.G„-.*B + £ £ r 8 G „ . ^ n + £ £ r 8 G n _ s * " = £ GBx». 

Note that for the first sum, if n = ms there would be no second sum, so we can 
combine the first three summations to give 

Go + £ X>. <?»-.*" = £cnx". 
n-1 a - 1 « = 0 

It remains only to observe that the inner sum on the left is just Gn , so we have 
the desired result. 

We now specialize this result for the Un relation. 

CoMolZaAif 2.2: The generating function for the relation 

m 

is given by 

Rn(U; x) = h - Y,rex°j . 

In Theorem 2.1 the double summation of the numerator is zero since all in-
itial conditions involved are zero. The other initial condition is 1, so the 
first factor is 1. 

An Implication of this result is that the generating function for Gn is ob-
tained from that of Un by multiplication by a polynomial of degree m - 1. 

In [3] we generalized both the Un and the Gn relations to the Vn and the Hn 
relations. This was accomplished by taking a subset A of the integers from 1 
to 772, including 772, The solutions then were obtained by replacing vt with 0 if 
i £ A. We shall do that for their generating functions. 

CoKotlaXy 2.3: The generating function for the relation 

8 eA 
is given by 

RA(V; x) = Yl - £ rex*\ 

This follows directly from Corollary 2.2 by replacing vi with 0 If i £ A. 
The most general recurrence relation is the Hn* Its generating function is 

given in the next corollary. 

CotiolZaAy 2.4: The recurrence relation 
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H* = E 2 * ^ * - * 5 Hi-*9 "> H° a r b i t r a r y » 
± S 8 i V e n b y a £ / - i \/ v i 

RA(H; x) = [H0 + £ £ vsEn_sxn (l - J^ r8xA , 
\ seA> n-1 / \ seX / 

where i4 ' is A with 1 deleted if 1 e 4; otherwise .4' = A, 
For the proof of this* we first need to interchange the order of summation 

in the numerator of the function of Theorem 2.1. Then we replace ri with 0 for 
i + A. 

The theorem together with the three corollaries start generating the given 
relation with the initial condition of highest order. In all our cases, this 
was the one with index 0. We can modify the notation to obtain a generating 
function with any indices for the initial conditions. 

TktOKOm 2.5: The recurrence relation 

m 
Gt =lLrsGt-s'> Gi + p> •••> Gm + P arbitrary, 

s = l 

has for its generating function 

2/n + l + p m \ / m 
G.+pXm + P+ E E *e<tn-*n ( l - X > . * ' 

n - w + l + p s - n - m + 1 / \ s=l 

This reduces to Theorem 2.1 when p = -m9 as can be verified. 
The only change we have for the Un and Vn relations is to have as the num-

erator Um + pxm+p and Vm + pxm + p, respectively. The change for the Hn relation is 
given in the next corollary. 

Co/LOttaAif 2.6: The recurrence relation 

Ht = E
 r8Ht-a'> Hi-P> •••' Hm + P arbitrary, 

seA 

has fo r i t s g e n e r a t i n g func t i on 

( m+p+8-1 \ / . 

^ + P * m + P + E E r.B„-ax»)[l -'£rex>y1. 
k s e A ' n = m + p + l / \ s eA / 

Once more, this reduces to the result of Corollary 2.4 for p - ~m. 
If it were desired to generate all the initial conditions, the generating 

function is given in the next: theorem. 
TkdOh.QJ(r\ 2.7: A generating function for the relation 

m 
Gt = E p a ^ - S ; Gi + P> • • • » Gm + P a r b i t r a r y , 

u s = 1 

xs given by / m+P m+p n-l-p \ / m \ - i 

22GnXn-Y, E r*Gn s*n" 1 - E P ^ S ' 
\ n - . l + p n = 2 + p e - 1 / \ s « 1 J 

oo 

If we s e t t h i s equa l t o ^ J £ n # n and c l e a r t he n e g a t i v e exponent , we hayc 
n = 1 + p . . . 

m + P m + P n - l ~ p oo m oo 

E ^^n - E E ^ - ^ = E Gn*n - E E ^G**"*8-
n = l + p w = 2 + p a - 1 n = 1 + p e - l n - l + p 
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To simplify this expression, we use the first term on the left to reduce 
the first term on the right. We transpose the second sum on the right. Fur-
ther, we change the summation on n by replacing n by n - s, and then break the 
sum at n - m + p. This gives 

(w m + P m+p n-l+p \ m » « 

E E rA-s*n - E E r
8<*.-8*n) + E E ^Gn.sx" = £ <?„*». 

s-ln = l + s + p n = 2+p s -1 J s = l n»m + l+p n = m + l + p 
If s = 77Z in the first sum, we would have no second sum; thus we need sum 

only to m - 1. It can be verified that these two summations are the same. Fi-
nally, interchanging the summation on the last term on the left will give the 
right side from the definition of the Gn relation. 

For the Un and Vn relations, this gives the same generating function we had 
before. 

3. EXAMPLES Of THE GENERATING FUNCTIONS 
A simple example of an Hn relation will illustrate the results of the last 

section. Let A = {2, 5} so m = 5 and Ht = r2Ht_2 + i3
5Ht_5 with H_liS #_3, H_2, 

H_19 H0 all arbitrary. It can be readily verified that the application of the 
definition of the relation yields, for the first seven terms, 

H1 = v2R_i + r5H^ 

E2 = r2E0 + r5H.3 
H3 = r\E_x + r2rsH^ + r5ff_2 

Hk = r2#0 + r2r5H_5 + r5E_x 

H5 = v\E_x + r*r5H_„ + r2r5H.2 + r5H„ 

S6 = rlH0 + r|r5ff.3 + Tr^H^ + rffl.,, 

ff7 = r^S.j. + rf^^U + r2r5S-2 + 2r2r550 + r|S_3. 

The generating function is given by 

(fl0 + r2E^x + rs(fl_hx + E_3x'2+ E_2x3 + ff.1£c'*))(l - v2x2 - r^x5)'1. 

For t h e co r r e spond ing Vn r e l a t i o n , we have 
Vx = 0 , V2 = r2, V3 = 0 , Vh = r\, V5 = rs, 7g = v\, V? = 2 r 2 r 5 . 

The g e n e r a t i n g f u n c t i o n t h a t g ive s a l l t h e i n i t i a l c o n d i t i o n s has fo r i t s num-
e r a t o r 

E_hx~h + H_3x~3 + (H_2 - v2E_h)x-2 + (#_! - i ^ t f ^ )*"" 1 + (ff0 - P 2 # _ 2 ) . 

We shall list the five relations given in [2] and the one in [1, p. 4], and 
note their generating functions below them. 

1. Gk = rGk_i + sGk_2; G0 = 0, Gx = I 
x(l - rx - sx2)'1 = x + vx2 + ( r 2 + s)x3 . . . 

x(l - x - x2)'1 = x + ;c2 + 2x3 + 3x4 + 5x5 + &c6 ' + ' • • • 

(This i s t h e famous F i b o n a c c i s equence . ) 

3 . Mk = vMk_1 + sMk_2; M0 = 2 , ^ = p 

(ras + 2s# 2 ) (1 - P # - sx2)'1 = P + (p 2 •+ 2s)x2 + • • • 

or (2 - P X ) ( 1 - PX - s t f 2 ) ' 1 = 2 + P # + ( P 2 + 2 s ) ^ 2 + • • • 
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4. Lk - Lk_± + Lk-2l L0 = 2, L1 = 1 

Or + 2o?2)(l - x - x 2 ) " 1 = x + 3x2 + 4x3 + 7 ^ + 

or (2 - x)(l - x - a;2)"1 = 2 + a: + 3x2 + 4a?3 + 7x4 + '••• 

(This is the Lucas sequence.) 

5. Uk = rUk_1 + sUk„2\ U0; U-L arbitrary 

(J/jff + £/0s#2)(l - ra - s^2)"1 = £7-̂  + (^ + sUQ)x2 + ••• 

or (£/0 + (U1 - i/0)̂ )(l - 2W - sx2)'1 = [/0 + U±x + (rU1 + s£/Q)x2 + ••• 

6. Tn = p^.3. + sTn_2 - rsTn_3; TQ9 T±s T2 arbitrary 

(T2x2 + (sT1 - rsTQ)x3 - rsT^) (1 - rx - s#2 + rsx3)'1 

= T2x2 + (vT2 + s ^ - PS^Q)^3 + ••• 

or (T0 + (Si -rT0)x + (T2 - r ^ - sT0)x2)(l - rx - sx2 + P 2 X 3 ) - 1 

= T0 + T±x + T2x2 + (rT2 + sTx - r TQ)x3 + •••• 

From the solutions given in [2] and [1], it can be verified that we obtain 
the terms generated above. 

The generating function given in Section 2 can be used to generate terms of 
any given recurrence relation. With specified values for the Ti and the ini-
tial conditions, the problem becomes a division of one polynomial by another. 
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THE RESIDUES OF n* MODULO p 
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SUMMARY 

In this paper we investigate the residues of nn (mod p) , where 1 <. n .<. p - 1 
and p is an odd prime. We find new upper bounds for the number of distinct 
residues of nn (mod p) that can occur. We also give lower bounds for the num-
ber of quadratic nonresidues and primitive roots modulo p that do not appear 
among the residues of nn (mod p). Further, we prove that given any arbitrarily 
large positive integer M, there exist sets of primes {p^ } and {o-}9 both with 
positive density in the set of primes, such that the congruences 

xx = 1 (mod p^), 1 <. x <_ pi - 1 (1) 

and 
xx = -1 (mod q.), 1 < x <_ q. - 1 (2) 

both have at least M solutions. 


