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CONGRUENCES FOR BELL AND TANGENT NUMBERS 
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Massachusetts Institute of Technology, Cambridge, MA 02139 

7. INTRODUCTION 

The Bell numbers Bn defined by 

i>S = ̂  
n - 0 n ' 

and the tangent numbers Tn defined by 

J2 Tn^ - tan x 

are of considerable importance in combinatorics 9 and possess interesting number-
theoretic properties. In this paper we show that for each positive integer n9 

there exist integers a0, ax» B.«9 <zn_1 and b19 b2S .«, ., bn_1 such that for all 
??? _> 0 9 

Bm + n + an-A+n-l + • " + a05m E °  < m o d w !> 

^d Tm+n + V A + n - i + ... + ^ w + 1 E 0 (mod (n - l)!n!). 

Moreover, the moduli in these congruences are best possible. The method 
can be applied to many other integer sequences defined by exponential generat-
ing functionss and we use it to obtain congruences for the derangement numbers 
and the numbers defined by the generating functions ex^x2^2 and (2 - e*)"1* 

2. THE METHOV 
A Hurwitz series [5] is a formal power series of the form 

E xn 

an n!9 
n-0 

where the an are integers. We will use without further comment the fact that 
Hurwitz series are closed under multiplication, and that if / and g are Hurwitz 
series and g(0) ~ 0, then the composition fog is a Hurwitz series. In parti-
culars gk/k\ is a Hurwitz series for any nonnegative integer k. We will work 
with Hurwitz series in two variables, that is9 series of the form 

v^ xm yn 

Z. amnm\ nl9 

m, n-Q 

where the amn are integers. The properties of these series that we will need 
follow from those for Hurwitz series in one variable. 

The exact procedure we follow will vary from series to series 9 but the gen-
eral outline is as follows: The /cth derivative of the Hurwitz series 

n ™ 0 * n = 0 

Our goal is to find some linear combination with integral coefficients of 

f(x), f'(x), ..., /(»><«) 
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all of whose coefficients are divisible by n! (or in some cases a larger num-
ber). To do this we use Taylor's theorem 

fix +y)= £ f«Hx)^. 
k = 0 

We then make the substitution y = g{z) and multiply by some series h(z) to get 

Hz)f[x + g(z)] = J f«\x)h(z)^ff^. 
fe = o 

win 
If n(z) and g(z) are chosen appropriately, the coefficient of — zn on the 

xm zn 
left will be integral. Then the coefficient of —: r on the right is divisible 

ml n\ & 

by nl 9 and we obtain the desired congruence. 

3. BELL A/UMBERS 
We define the exponential polynomials §n(t) by 

Thus 

<(>n(l)=5n and (f)n(t) = J^Sin, k)tk, 
k = 0 

where S(n9 k) is the Stirling number of the second kind. We will obtain a con-
gruence for the exponential polynomials that for t = 1 reduces to the desired 
Bell number congruence. 

We set 

/to) - ^ - ^ - £ • „ ( * > £ ? . 
n = 0 " • 

Then 

f(x + z/) = exp [ £ ( e x + ̂ - 1) ] = exp [t(ex - 1) + t ( < ^ - l).e«] 

= fix) exp [£ (e* - l)ex]. 

Now set z/ = log(l + z) . We then have 

J /(*>(a0[lo8(fc1, + a)]* = /<*)*"«". 
k = o 

Multiplying both sides by e~tz , we obtain 

i * 

fc = 0 " n-0 

Now define polynomials #Wffc(£) by 

8 . t . [ H a ^ ) ] ^ ^ ^ ^ , ( 2 ) 
n = fc 

[Note that Dntn (£) = 1.] Then the left side of (1) is 

E / ^ w & n ^ w ^ E frS-E f̂c(«*„+*(«. (3) 
k = 0 n = 0 m,n = 0 fc = 0 
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Since 

' '"V"'- !>•*>£• 
n = k 

where s(n9 k) is the Stirling number of the first kind9 we have the explicit 
formula 

0„,k(*) = £("!)'(}) s(n - j , k)t3'. (4) 
Since 

we have 

m • 0 j = 0 

hence the right side of (1) is 

oo m 

E ^ n t n E f i ) ^ -«?» w)M*>. (5> 
Equating coefficients of —: r- in (3) and (5) we have 

Pfiopo&AJtLovi V: For a l l m9 n >_ 09 

n m 

fc = 0 j - 6 w / 

where 

Now l e t Dni k = £ M , f c ( l ) . S e t t i n g t = 1 in P r o p o s i t i o n 1, we o b t a i n 

Vfioposition 2:. For m, n >.. 0 , 

where 

n w 

^ = E ( " 1 ) J ' G ) s ( n " J's /c)e 
J-0 

A recurrence for the numbers Dn-t £ is easily obtained. From (2), we have 

n = fc 
hence 

V n 2" _ a [ l Q R ( l + 8 ) ] * 
n = k 

D(U> *) = E Dn,kUk^ = ^~S(1 + 3 ) w . (7) 
From ( 7 ) j we o b t a i n 

— 7 n! 
n >.k 

t hus 

j^D(us z) = -0-*( l + 3)w + we"a(l + zT"1, 

(1 + Z)Y-D(U9 Z) = - (1 + z)D(u9 z) + w£(us s) 

(u - 1 - z)D(u9' z). (8) 
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Equating coefficients of uk—- in (8)s we have 

with D0i 
of Dn%k: 

^n + ly k 

1 and D. 
'n,k-l (n + l)Dn,k YiD. n-1, k for n9 k >_ 0S 

n, k = 0 for k > n or k < '0. Here are the first few values 

Table 1 

n 

0 
1 
2 
3 
4 
5 
6 
7 

fc 0 

-1 

-1 

-1 

-1 

1 

1 
_3 
8 

-24 
89 

-415 
2372 

2 

1 
-6 
29 

-145 
814 

-5243 

3 

1 
-10 
75 

-545 
4179 

4 

1 
-15 
160 

-1575 

5 

1 
-21 
301 

6 

1 
-28 

7 

1 

Thus the first few instances of (6) yield 

Bm + 2 + Bn+\ + Bm E 0 (mod 2) 

5 w + 3 + 23m+1 - 5 r a = 0 (mod 6) 

Bm+h - 10Bw+3 + 5Bm+2 + 5 = 0 (mod 24). 

If we set 

then from (7) we have k = 0 

where (w)^ = u(u - 1) ... (u - j + 1) . It can be shown that for prime p, Dn(u) 
satisfies the congruence Dn + P(u) = (up - w - l)Dn(u) (mod p) . In particular, 
Dp(u) = up - u - 1 (mod p) 9 and we recover Touchardfs congruence [8] 

5„+ P = Bn + Bn+1 (mod p). 

Touchard later [9] 'found the congruence 

B2p - 2Bp+1 - 23p + p + 5 = 0 (mod p 2 ) , 
which is a special case of 

Bn + 2p - ^ n + p+l " 2 ^ n + P +
 Bn + 2 + 2£„ + 1 + (p + 1)5 = 0 (mod p 2 ) , 

but these congruences do not seem to follow from Proposition 2. 
We now show that in a certain sense the congruence obtained from Proposi-

tion 2 cannot be improved. 

VKO^OhXXion. 3: Let A09 A19 A2, . 
..., an be integers such that 

. be a sequence of integers and let aQ,. a13 

2 ^ a ^ ™ + f c = | / i / 
fc = Q 

i f 0 <_ m < n 
i f m = n 

Let &o, 2?3., • • • s bn be i n t e g e r s such t h a t /"] f̂c-̂ m + fc i s d i v i s i b l e by R fo r a l l 
m > 0 . Then i? d i v i d e s 2?w#. fc = o 
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Vnoofc Let 

Since 

R divides S. But 

s = I ^ V * + J" 
i, 3 = 0 

n 

s =£>; i = Q 
n 

• 2 > 
J - 0 

n 1 

E V W J - 0 
n 

J2 aiAi+i 
i = 0 

= 

CotiolZa/iy: If for some integers bQ9 b19 . .., £„_19 we have 

5m+„ + V A + » - i + ••• + V m = 0 (mod R) for all m > 0, 
then i? divides n\ . 

VKOOji Since 5(n, fc) = 0 if n < Zc and £.(n, n) = 1, the right side of (6) is 
zero for 0 <_ m < n and n\ for m = n. Thus Proposition 3 applies, with bn = 1. 

For other Bell number congruences to composite module, see Barsky [1] and 
Radoux [7]. 

4.- TANGENT NUMBERS 

We have 

/ . \ tan x + tan y _ , \^ 2 ^ n-i ,_ „ 
tan Or + y) = ^— = tan a: + > sec x tan x tanny. 

^ 1 - tan x tan y JL*I J 

u n = i 
Now set 2/ = arctan z. Then 

00 

tan(# + arctan z) - tan x + \ ^ s " sec2# tax?l~1x9 (9) 
and by Taylor's theorem, 

/ . N \T* m (arctan z)k ',-,rx\ 
tan Or + arctan 2) = 2^ tanKK)x- r y - — — , (10) fe = o 
7^ 

where tannic = — - tan x. 
dxk 

Now let us define integers T(ny k) and t{n9 k) by 

^ - £ > < » . * > f ? and (arctan «)* = g > ( w , fe)g, 
« = fc ' * w = fc 

Tables of T(n9 k) and £(n, k) can be found in Comtet [3, pp. 259-260]. Note 
that 

d tan^rc _ _ 2 tan^"1^ 
sec ah dx k\ * {k - l ) ! 9 

so 
^r~^ Xm 

sec2x tan""1^ = (n - 1) ! 2 ^ T^m + *» n)^]" f o r n - *• 
Then from (9) and (10), we have 

E §-^it(n,k)Tm + k= tan x +^ £ |->n! (n - 1) lTQn + .1, n) . 
m,n = 0 'k = 0 m -1 n-0 * 

Then by equating coefficients of —: r we have 

P/lopoAition 4: For m J> 0S n •> 1, 
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Y^t(ns k)Tm + k = n\(n - l)\T(m + 1, n). (11) 
fc-0 

From Proposition 4, we obtain the congruence 

n 
£ * ( « , 'ft)Tw + fc = 0 (mod n! (n - 1)!). 
fc = o 

The first few instances are 

Tm+2 E 0 (mod 2) 

^ + 3 " 2Tm + l = °  (^d 12) 
Tm + , - 8!Tw + 2 E 0 (mod 144) 

Tm + 5 - 20Tn + 3 + 24^ + 1 E 0 (mod 2880) 

Tn + S - bOTm + h + 184^ + 2 = 0 (mod 86400). 

Note that the right side of (11) is zero for m < n - 1 and n\\n - 1)! for 
m = n - 1, Proposition 3 does not apply directly, but if we observe that 

t(n, 0) = 0 for n > 0, 

and w r i t e T£ fo r ^ n + 1 » then (11) becomes 
n - 1 
] £ t ( n , k + 1 ) ^ + ^ = n ! ( n - l )!T(m + 1, n ) , 
fe = o 

to which Proposition 3 applies: if for some integers b±s b2, . . . , bn-1» we have 
Tm+n + V A + n - 1 + * " + hlTm + l = 0 (™d i?) for a l l 77| > 0, 

then i? divides n\ (n - 1) ! . 
Proposition 3 does not preclude the possibility that a better congruence 

may hold with m _> M replacing m >_ 0, for some M. In fact, this is the case, 
since the tangent numbers are eventually divisible by large powers of 2; more 
precisely, x tan x/2 is a Hurwitz series with odd coefficients (the Genocchi 
numbers). 

5-. OTHER NUMBERS 
We give here congruences for other sequences of combinatorial interest, 

omitting some of the details of their derivation. 
The numbers gn defined by 

E ^ - S f - " - ^ ' 1 

count "preferential arrangements" or ordered partitions of a set. They have 
been studied by Touchard [8], Gross [4], and others. 

If we set G(x) = (2 - ex) _1, then 

2 n ( i - e-yy 

) (2 -

Substituting y - -log(l - z) in (12), we have 

^ o (2 - e J ) n + 1 

2ns" G[x - log(l - s)] = (1 - z)T — . (13) 
* = o (2 - e * ) n + 1 
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Proceed ing a s b e f o r e , we o b t a i n from (13) t h e congruence 

n 

Y,c(>n' k)3m + k E 0-faod 2 n - : L n ! ) , m >_ 0 s (14) 
k = o 

where c(n, k) = \s(n5 k) | is the unsigned Stirling number of the first kind, 

£"-<-'-""V"'-n = 0 
The first few instances of (14) are 

9m+2 + ^m+l E °  (mod 4> 

&i + 3 + 30m + 2 + 20m + 1 = 0 (mod 24) 

<7m + , + S.gn + S + ll<jm + 2 + 6<?m + 1 = 0 (mod 192), 
The derangement numbers din) may be defined by 

e~x 

/n! 1 - # 

n = 0 

It will be convenient to consider the more general numbers d(n9 s) defined by 
00 n -x 

Da(x) = Y^ d(n9 s)—r = — . 

fa, n! (i - * ) 8 

Then 
Dg (x+y) = — ^ ^ = S - * y j,»(M + S - ^ ^ . (15) 

(1 - x)s [1 - y/(l ~ x)]8 „^o V « ^ ( l - x ) " + 8 

Multiplying both sides of (15) by ey and equating coefficients, we obtain 

]£(3J)d(m + *:. s) = nl( n + ®•" l)d(.m, n + s ) . (16) 
k = 0 

In-particular, we find from (16) that for prime p, 

d(m + p, s) + d(tfz, s) = 0 (mod p ) . 

The numbers t defined by 
* x2 

t,-—r- = e n n ! 
M = 0 

w - L *4? - -
have been studied by Chowla, Herstein, and Moore [2], Moser and Wyman [6], and 
others, and count partitions of a set into blocks of size one and two. We have 
T(x + y) = T(x)T(y)ex+y; hence 

T{y)~1T{x + y) = T(x)ex+K (17) 

L e t oo y1 

n - 0 
Then from (17) we o b t a i n 

W(y) = ^ w n ^ = Tiy)-1 = e 2 . 
n = 0 

E(*K*****-nI (»)*»-•• as) 
)!c-0 

where we take tn = 0 for n < 0» We note that (18) satisfies the hypothesis of 
Proposition 3, so we obtain here a best possible congruence. 
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The numbers Wn have been studied by Moser and Wyman [6]... From the differ-
ential equation Wf(y) = -(1 + y)W(y) 9 we obtain the recurrence 

from which the wn are easily computed. The first few instances of (18) are 

tm + 2 "" 2tm + 1 = 21 ̂  Ĵ m -2 

-3 

*m + , - 4tm + 3 + 8tm + 1 - ltn = 24(J) *„,_„. 

A natural question is: To what series does this method apply? In other 
words, we want to characterize those Hurwitz series f{x) for which there exist 
Hurwitz series h(z) and g(z)'9 with k(Q) = 19 g(Q) = 05and^f(0) = 19 such that 
for all m% n >_ 05 the coefficient of (xm/ml)zn in h(z)f[x + g(z)] is integral. 
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In [1] one of t h e a u t h o r s proved t h e fo l lowing r e s u l t . 

Let u be a r e a l number such t h a t u > 1 9 and l e t {xn}n^o £>e a sequence 
of nonnega t ive r e a l numbers such t h a t 

XnJhl = UXn + AuZ - 1) Ĉ n " xl) + (̂i ~ U^o'y 
for every n J> 0, Then 

Xn+2 ™ ^UXn+l ~ Xn 

for every n 2. 0; and, in particular9 if u» x Q 9 x ± axe integers3 then 
xn is an integer for every n >_ 0. 


