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inaccurate to discuss the fraction of F with first digit p.. However, what we 

proved was that lim inf —AP(N) 2.1ogf2- -J. By the remark at the end of the 

proof9 it is then easy to see. that it is impossible to have lim sup jjAp(N) 

greater than logf-2——J for any p. Therefore9 lim sup = lim inf and the limit 
exists. \ tr / 
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A SIMPLE DERIVATION OF A FORMULA FOR E^r 
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The formula for 
n 
2^ k {r and n being positive integers) 
fc-i 

is known (see Barnard & Child [1] and Jordan [2]). However9 most undergraduate 
texts in algebra and calculus give these formulas only for r = 15 29 and 3. 
Perhaps the reason is that the known formula for general integral r is a hit 
involved and requires some background in the theory of polynomials and Bernoulli 
numbers. In this note we give a very simple derivation of this formula and no 
background beyond the knowledge of binomial theorem (integral power) and some 
elementary facts from calculus are needed. Consequently9 the author hopes that 
the general formula can be exposed to undergraduates at some proper level. 

Let 

where r = 0, L, ..-., n = 1, 2, **.9 and note that SQ(n) = n. In order to find 
a formula for. JSL(ft), we use the following identity: For any integer k we have 

fk X'dx = ~-y(?Cr + 1 - (fc - 1)"+1) 

TI t{r yy-iy+z'dkj 
r 

3 

where a. (r) = (-l) r + 2 ^ ' / p t l \ /(r + 1). Hence, 



n 
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fe = i 

2 ^ I xrdx = / xrdx = ^ a^ ( P ) ^ - ( n ) , 
and 

Since a P ( r ) = l s i t fo l lows from (1) t h a t 

(2) M n ) - i h r j - E V r W n ) . 

The numbers a,j (r) can be easily evaluated. Here we list some of the a7-(p)?s: 

a0(D = -» 

a0(2) =|, ax(2) = -l 

1 3 
a0(3) = --j, a1(3) = 1, a2(3) = - j 

a 0 ( 4 ) = | s a x ( 4 ) = - 1 , a 2 ( 4 ) = 29 a 3 (4) = -2 

a 0 ( 5 ) = - p a x ( 5 ) = 1, a 2 (5) = - - j , a 3 ( 5 ) = 3 ~ ' a** ( 6 ) = " "2 

a 0 ( 6 ) = y s a 1 ( 6 ) = - 1 , a 2 ( 6 ) = 3 9 a 3 ( 6 ) = - 5 , ah (6) = 5 , a 5 ( 6 ) = - 3 , e t c . 

Using (2) we o b t a i n 

^ i ( n ) - X + 1 ~ 2 ~ " 

c r \ n3 (n n(n +• 1 ) \ _ n (n + 1) (2n + 1) S2 (W) - -y- - ^ - — ^ J - - —- -

a , \ n* I n , n(n + 1) 3 n(w + l)(2n + 1) \ /n(n + 1)\2 
S9(n) . _ . ^ _ + 2 ~ " 2 — j = [ 2 ) ' 

Continuing in this fashion we obtain 

Sh(n) =n(n + 1)(2n + 1)(3n2 + 3n - l)/30 

S5(n) = n2(n + l)2(2n2 + 2n - 1)/12 

£6 (n) = n(n + 1) (2n +. 1) (3n4 + 6n3 - 3n - 1) /42. 

However9 such evaluations get messy with higher values of r. An integral for-
mula for Sr(n) is known (cf. Barnard & Child [1]), but its evaluation depends 
on Bernoulli numbers. We derive this formula from (2) with an advantage that 
the required Bernoulli numbers satisfy a simple recurrence relation in terms of 
aj(r) which is a by-product of our derivation. 

Treating n as a continuous variable and differentiating (2) with respect to 
n we have 

v-l 
(3) Si{n) = n* - J^ad(r)S!(n)9 

dSj(n) J' = 0 

where S! (n) = 5 . 
J dn 



1981] A SIMPLE DERIVATION OF A FORMULA FOR J^k* 179 
fc-l 

Since Sj (n) - Sj(n - 1) = n\ one obtains 

SJ(n) -jn*-1 + Sl(n - 1) = . . . 

= i n i _ 1 + j ( n - l)^'1 + . ••• + j l*7'-1 + £ . ' ( 0 ) . 

Clearly 9 Sj (0) is the coefficient of n in Sj (n) 9 and writing 5. = S'(0)5 where 
BQ = 1 and SQ(n) = n, we obtain J 

n 

(4) sy(n) = JE^'"1 + Bi -3'Sj.^n) + B. . 

From (3) and (4) we obtain 

v-l v-1 

3 - 0 J - 0 

It is easy to verify that 

j ̂ .(r) =paJ._1(p - 1), 
and hence 

v-l r-l 

j = i j - o 

<5> - 4 ? " £ V * " 1)fi* (n)l " S a* (P)'̂' 
L j-o J j-o 

Thus it follows from (2) and (5) that 

(6) £;(n) =rSr^(n) + Br5 

where 
r- 1 

(7) Br = - E a j ( r ) B j ' 5o = 1-

The relation (6) immediately leads to 
(8) £r(n) = r JSr_1(n)dn + nBr. 
The numbers Br (r = 0, ls . „.) are Bernoulli numbers and can be generated from 
(7)5 and starting with S0(n) = n one obtains Sr(n) from (8) for any desired P. 
Note that the relation (7) for Bernoulli numbers is a by-product of our deriva-
tion of (8) from (2). Consequently, no background in the theory of polynomials 
and Bernoulli numbers is needed to arrive at (8), Moreover, (7) and (8) together 
make it possible to evaluate Sr(n) for any r9 or one can use (8) to get an ex-
plicit expression for Sr(n) (see Barnard & Child [1]). 

To illustrate the preceding9 from the list of ag- (r) and (7) we easily ob-
tain 

Bo = r> Bi = 2"' 52 = "6' Bs = °'» Bh =""309 B5 = °> Be = "42' " " 

and since SQ(n) = n9. it follows from (8) that 

/
7l 71 71 

n dn + -j = — + Y* 

J \ 2 2/ 6 3 
1 + 21 + 21, etc. 
3 2 6 
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Finally, we note the following interesting fact. Since 

a0(r) = i^i-j-
and 

S0(n) = n, 

it follows from (2) that 

Sv(n) = S1(n)Pv_1(n)9 

where Pr_1(n) is a polynomial in n of degree r - 1. 
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1. WTROVUCTWN 

Polygonal numbers of o rde r k (k = 3, 4 , 5 , . . . ) a r e t h e numbers 

(1) Pnik =\[{k - 2)n2 - (k - 4)n] (n = 1, 2, 3 , . . . ) . 

If k = 4, they are reduced to the square numbers. It is clear that there 
are an infinite number of square numbers which are at a time the sum and dif-
ference and the product of such numbers, from the identity 

(4w2 + l)2 = (4tfz)2 + (4/7?2 - l)2 

= (8?^ + 4w2 + l)2 - (8m1* + 4w2)2, 

and since there are an infinite number of composite numbers of the form 4m2 + 1 
(for example, ±fm= 5j + 1, km1 + 1 is divisible by 5). 

Sierpinski [1] proved that there are an infinite number of triangular num-
bers (k = 3) which are at a time the sum and the difference and the product of 
such numbers. 

For k = 5, Hansen [2] proved that there are an infinite number of Pn,5 that 
can be expressed as the sum and the difference of such numbers. 

O'Donnell [3] proved a similar result for k = 6, and conjectured that there 
will be a similar result for the general case. 

In this paper it will be shown that their method of proof is valid for the 
general case, proving the following theorem. 

T/ieo/iem: Let a and b be given i n t e g e r s such t h a t a ^ 0 and a = b (mod 2) , and 
l e t 

(2) An = \(an2 + bn) (n = 1, 2, 3 , . . . ) . 


