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FIBONACCI NUMBER IDENTITIES FROM ALGEBRAIC UNITS 

CONSTANTINE KLIORYS 
Pennsylvania State University, Sharon, PA 16146 

1. IHTROVUCTlOhl 

In several recent papers L. Bernstein [1], [2] introduced a method of oper-
ating with units in cubic algebraic number fields to obtain combinatorial iden-
tities. In this paper we construct kth degree (k J> 2) algebraic fields with 
the special property that certain units have Fibonacci numbers for coefficients. 
By operating with these units we will obtain our main result, ah infinite class 
of identities for the Fibonacci numbers. The main result is given in Theorem 1 
and illustrated in Figure 1. 

2. MAIM RESULT 

Tkton.2m I: For each posotive integer k let Ak be a (2k - 1) x (2k - 1) determi-
nant 9 Ak = det(a^)9 see Figure 19 where a^ is given by 

(-l)n+1Fn+2 if i = j and j < k 

(-1)% + 1 + (-Dn + 1Fn+2 if i = j and j > k 

(~Dn^n + 1 if i = J ~ k and i < k 
or i = j + k and i > k 

0 otherwise 

(k > 1), 

For k = 1s we define A1 to be the middle entry in Figure 1, i.e., 

Then, for all k >_ 1, we have Fn 

- n + l * 

i-ir+lFn+2 o 

Ak = 0 

( - i ) X + i 

0 (-l)"F„+i °  

(-l)"+1F„+2 

0 (-DnFn + 1+(-Dn + 1Fn + 2 0 

0 

o 

0 (-l)"fn+i 0 n+l-r 
0 (-D"F„ + i + (-D"T +̂2 

Fig. 1 (2k - 1) x f2& - i; Determinant 
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VK.OO^i Throughout the entire ensuing discussion, k will be a fixed positive 
integer. Consider the following 2k recursion formulas with the accompanying 2k 
initial conditions. For each fixed j, j = 0, 1, ..., 2k - 1, let 

a An •+ 2k) = a An + k) + a,, (ft) (ft > 0) (1) 
«/ *7 «/ 

and 
. N ) 1 if n = j /0% 

a An) = < " (2) 0 otherwise. 

In particular, for k = j = 1, we obtain 

^(n + 2) = ̂ (ft + 1) + aL(n) (ft _> 0) 
and 

ax(0) = 0, ax(l) = 1, 

that is, {a1(n)}n=1 is the Fibonacci sequence. In general, one can verify that 
for any fixed k and any j, j = 0, 1, •.., 2fc - 1, the nonzero terms of the se-
quence {dj (ft)}™=± are the Fibonacci numbers. More precisely, from (1) and (2) 
one can obtain the equations: 

aj(k - 1 + fen) = 0 if j 7* 2& - 1 or 7c - 1 

ak_±(k - 1 + kn) = 2 ^ (3) 

a2fc-l<fe ~ * + ^) = Fn-
Now consider the algebraic number field Q(w) where W2k = 1 + U^. We claim 

that the nonnegative powers of w are given by the equation 

wn = a0(ft) + a^iyi)w + ••• + a2^_ 1 (n)^2^"1, (4) 

where the a^ (ft) , 0 <_ j <_ 2k - 1, satisfy (1) and (2). From (4) we obtain 

wn+1 ^ a2k_1(n) + aQ(n)w + a1(n)w2 +••. + (ak_±(n) + a2k^(n))wk 

+ ... + a2k_2(n)w2k'K (5) 

Comparison of the coefficients in (4) and (5) yields the following 2k equations: 

a0 (ft + 1) = 0 • aQ (ft) + 0 * ax (ft) + • • • + 1 e a2k_ x (ft) 

a1 (ft + 1) = 1 * aQ (n) + 0 * a (ft) + • • • + 0 °  a (ft) 

a2 (n + 1) = 0 * a0 (n) + 1 • a± (ft) + • • • + 0 • a2k _ 1 (ft) 

: : : ( 6 ) 

ak(n + 1) = 0 • a0 (ft) + 0 • ax (ft) + • ..• + 1 • afc_1 (ft) + - •. + i . a2k_x (ft) 

2 f c - l (ft + 1) = 0 • a0(ft) +0-^(72) + ... + 1 • a2k_2(n) + 0- a2fc.1< 

This system of equations can be written more simply in matrix form as follows. 
Let C he the coefficient matrix of the a.(ft). Explicitly, C = (c^-) Is a (2&) 
by (2fc) matrix, where 

= 1 

= 1 

= 1 if I = 1 + j 

= 0 otherwise. 

Let Tn denote the following column matrix: 

Gl, 2k 

°k+l,2k 

°H 
°id 
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a,(n) 

hk-i™ 

(n j> 0) (7) 

The system (6) can now be wr i t ten as 

More general ly, if I denotes the iden t i ty matrix, then 
Tn = ITn 

(8) 

n + 2k = C2kT, 

The characteristic equation of C is found to be 

det(C - XI) = X2k - Xk - 1 0. (9) 

The Hamilton-Cayley theorem states that every square matrix satisfies its char-
acteristic equation. Hence, 

and from (8) 

From (7) and (10) we have 

C 

(C2k -

™n + 2k 

2k Ch I = 0 

I)Tn = 09 

+ n + k + ^n s (10) 

^.(n + 2fc) = a^ (n + k) + a^ (n) § j = 0S ...... 2fc - 1. 

Thus (1) of our claim is established. The initial conditions for (10) can be 
obtained from (4) and are given by the 2k column matrices 

where 
T • 

*ii -

( t i x ) , J = 05 1, ..., 2k - 1, 

; = 0 , 1 , . . . . , 2fc - 1 . 1 if i = j 
0 otherwise 

From (?) we have that ti± - ai{n). Hence9 ai{n) = 1 if and only if i - j 
and (2) is established, thus completing the proof of our claim. 

(11) 

n, 

From w(w 2k-i W k-l ) = 19 we see that 
,-1 ,2fc-l W J" = IcT 

If we denote the negative powers of w by 

,fc-i 

w 2>n (n) + &, (n)u + + fc^.^ 2 / c - l (n .> 0) , (12) 

then by calculations analogous to those used for the coefficients of the posi-
tive powers of w5 we obtain the following results. The coefficients satisfy 
the recursion formulas, 

bd (n + 2k) = bj (n) - bd (n + k), jv = 0, 1, ...., 2fe - 1. 

The initial conditions that are not zero are given by 
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b0(0) = 1 
b00O - - 1 

bjik - j ) = - 1 -/ = i • 9 fc - 1 
fy(2& - j ) = 2 J i s Z ' • ' " K i j (13) 

^ J ( J ) = l J = k9 

The result analogous to (3) is given by 

b±(k - 1 + fen) = (-l)n + 1Fn + 2 

bk+1(k ~ 1 + fen) = (~Dn^ + 1 (14) 
ij (fc - 1 + few) = 0, if j M or /c + 1. 

If we employ (4), (12), and (14), then omitting the argument (k - 1 + kn) from 
the <Zj and bj , we can write 

i _ wk-l + knw-(k-l + kn) 

= (a0 + axw + • • • + a ^ . ^ 2 * ' 1 ) ^ + *f c + 1wk + 1 ) . 
M u l t i p l y i n g out t h e r i g h t - h a n d s i d e and comparing c o e f f i c i e n t s , we o b t a i n t h e 
2/c e q u a t i o n s : 

S c - A + l + a 2 ? c - l ^ l + b
k + 1) = X 

a A + ak + lbk+l = ° 

a k - 2 ^ 1 + ^2k~2bk+l = ° 

ak-2hk + l + a2*c-2 A + fyc + l ) = °-
We will consider the a0, ..... , <̂ 2fc-i as tne unknowns and solve for cc2k_1 by Cra-
mer ?s rule. If we denote the coefficient matrix by D and use (3) and (14) to 
replace bls bk + l9 and a2k^19 then Cramer's rule yields 

&k p = + 1— 
n ~ det D 

We will complete the proof of the theorem by showing that det D = ±1. 
The norm of e = b^W + bk + 1Wk + 1 is given by the determinant of the matrix 

whose entries are the coefficients of w$9 j = 0, „.., 2k - 1, in the following 
equations: 

e = hiw + bk+iwk+1 

,2 , h -,.fc+2 ew = b^b) + bk + 1w]< 

ewk'1 = bk+1 + (b± + bk+1)wk (continued) 
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ew* = bk + 1w + (b1 + bk+1)wk+1 (15) 

ew2k~x = 6r + £ k + 1 + (j^ + 2ifc + 1)w*. 

The norm of £ is ±1 since e = w~ik~1 + kn) and io> is a unit. We observe, however, 
that D is just the transpose of the matrix from which the norm of e was calcu-
lated. Hence5 det D = ±1, and our theorem is proved,, 

As a concluding note we remark that, if k = 2, then the theorem yields—• 
with the appropriate choice of the plus/minus signs—the identity 

Fn - (-l)" + 1Fn
3
+2 + 2(-irFn + lFn\z + (-1)"+1F„3+1. (16) 

This can also be verified as follows: Replace Fn 2 hj Fn + Fn + 1 in (16) and 
simplify to obtain 

F2 - F F - F 2 = (-l}71 (17^ 

Finallys compare (17) with the known [6, p. 57] identity 

r n - l r n + l r n \ L' 

to complete the verification of (16). 
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In radio-astronomy circles, it is sometimes jokingly speculated whether it 
is possible to place infinitely many in-phase, nonaligned antennas in a plane 
(say, vertical dipoles in a horizontal plane). Geometrically, this means plac-
ing infinitely many nonaligned points in R2, with integral pairwise distances; 
and naturally the mathematician wants to generalize to R3 and i?n. In R there 
is still a physical meaning for acoustic radiators, but not for electromagnetic 
radiators, since none exists with a spherical symmetry radiation pattern (for 
more serious questions on antenna configurations, see.-[2]). 

A slightly different problem is that of placing a receiving antenna in a 
point P, where it receives in phase from transmitting antennas placed in non-
aligned coplanar points Alt AZ9 .•• (in phase with each other); geometrically, 


