# FIBONACCI NUMBER IDENTITIES FROM ALGEBRAIC UNITS <br> CONSTANTINE KLIORYS <br> Pennsylvania State University, Sharon, PA 16146 

## 1. INTRODUCTION

In several recent papers L. Bernstein [1], [2] introduced a method of operating with units in cubic algebraic number fields to obtain combinatorial identities. In this paper we construct $k$ th degree ( $k \geq 2$ ) algebraic fields with the special property that certain units have Fibonacci numbers for coefficients. By operating with these units we will obtain our main result, an infinite class of identities for the Fibonacci numbers. The main result is given in Theorem 1 and illustrated in Figure 1.

## 2. MAIN RESULT

Theorem 1: For each posotive integer $k$ let $A_{k}$ be a $(2 k-1) \times(2 k-1)$ determinant, $A_{k}=\operatorname{det}\left(\alpha_{i j}\right)$, see Figure 1 , where $a_{i j}$ is given by

$$
a_{i j}=\left\{\begin{array}{cl}
(-1)^{n+1} F_{n+2} & \text { if } i=j \text { and } j<k \\
(-1)^{n} F_{n+1}+(-1)^{n+1} F_{n+2} & \text { if } i=j \text { and } j \geq k \\
(-1)^{n} F_{n+1} & \begin{array}{l}
\text { if } i=j-k \text { and } i<k \\
0
\end{array} \\
\text { or } i=j+k \text { and } i>k
\end{array} \quad(k>1) .\right.
$$

For $k=1$, we define $A_{1}$ to be the middle entry in Figure 1 , i.e.,

$$
A_{1}=F_{n+2}-F_{n+1} .
$$

Then, for all $k \geq 1$, we have $F_{n}=\left|A_{k}\right|$.


Proof: Throughout the entire ensuing discussion, $k$ will be a fixed positive integer. Consider the following $2 k$ recursion formulas with the accompanying $2 k$ initial conditions. For each fixed $j, j=0,1, \ldots, 2 k-1$, let

$$
\begin{gather*}
a_{j}(n+2 k)=a_{j}(n+k)+a_{j}(n) \quad(n \geq 0)  \tag{1}\\
a_{j}(n)= \begin{cases}1 & \text { if } n=j \\
0 & \text { otherwise }\end{cases} \tag{2}
\end{gather*}
$$

and

In particular, for $k=j=1$, we obtain
and

$$
a_{1}(n+2)=a_{1}(n+1)+a_{1}(n) \quad(n \geq 0)
$$

$$
a_{1}(0)=0, \quad a_{1}(1)=1
$$

that is, $\left\{\alpha_{1}(n)\right\}_{n=1}^{\infty}$ is the Fibonacci sequence. In general, one can verify that for any fixed $k$ and any $j, j=0,1, \ldots, 2 k-1$, the nonzero terms of the sequence $\left\{\alpha_{j}(n)\right\}_{n=1}^{\infty}$ are the Fibonacci numbers. More precisely, from (1) and (2) one can obtain the equations:

$$
\begin{align*}
a_{j}(k-1+k n) & =0 \text { if } j \neq 2 k-1 \text { or } k-1 \\
a_{k-1}(k-1+k n) & =F_{n-1}  \tag{3}\\
a_{2 k-1}(k-1+k n) & =F_{n} .
\end{align*}
$$

Now consider the algebraic number field $Q(w)$ where $w^{2 k}=1+w^{k}$. We claim that the nonnegative powers of $w$ are given by the equation

$$
\begin{equation*}
w^{n}=a_{0}(n)+a_{1}(n) w+\cdots+a_{2 k-1}(n) w^{2 k-1} \tag{4}
\end{equation*}
$$

where the $a_{j}(n), 0 \leq j \leq 2 k-1$, satisfy (1) and (2). From (4) we obtain

$$
\begin{align*}
w^{n+1}=\alpha_{2 k-1}(n)+\alpha_{0}(n) w+\alpha_{1}(n) w^{2} & +\cdots+\left(\alpha_{k-1}(n)+\alpha_{2 k-1}(n)\right) w^{k} \\
& +\cdots+\alpha_{2 k-2}(n) w^{2 k-1} . \tag{5}
\end{align*}
$$

Comparison of the coefficients in (4) and (5) yields the following $2 k$ equations:

$$
\begin{align*}
& a_{0}(n+1)=0 \cdot a_{0}(n)+0 \cdot a_{1}(n)+\cdots+1 \cdot a_{2 k-1}(n) \\
& a_{1}(n+1)=1 \cdot a_{0}(n)+0 \cdot a_{1}(n)+\cdots+0 \cdot a_{2 k-1}(n) \\
& a_{2}(n+1)=0 \cdot a_{0}(n)+1 \cdot a_{1}(n)+\cdots+0 \cdot a_{2 k-1}(n) \\
& \vdots  \tag{6}\\
& \vdots \\
& a_{k}(n+1)=0 \cdot a_{0}(n)+0 \cdot a_{1}(n)+\cdots+1 \cdot a_{k-1}(n)+\cdots+1 \cdot a_{2 k-1}(n) \\
& \vdots \vdots \\
& a_{2 k-1}(n+1)=0 \cdot a_{0}(n)+0 \cdot a_{1}(n)+\cdots+1 \cdot a_{2 k-2}(n)+0 \cdot a_{2 k-1}(n) .
\end{align*}
$$

This system of equations can be written more simply in matrix form as follows. Let $C$ be the coefficient matrix of the $\alpha_{j}(n)$. Explicitly, $C=\left(c_{i j}\right)$ is a (2k) by ( $2 k$ ) matrix, where

$$
\begin{aligned}
c_{1,2 k} & =1 \\
c_{k+1,2 k} & =1 \\
c_{i j} & =1 \text { if } i=1+j \\
c_{i j} & =0 \text { otherwise } .
\end{aligned}
$$

Let $T_{n}$ denote the following column matrix:

$$
T_{n}=\left[\begin{array}{c}
a_{0}(n)  \tag{7}\\
\vdots \\
a_{2 k-1}(n)
\end{array}\right] \quad(n \geq 0)
$$

The system (6) can now be written as

$$
T_{n+1}=C T_{n}
$$

More generally, if $I$ denotes the identity matrix, then

$$
\begin{align*}
& T_{n}=I T_{n} \\
& T_{n+1}=C T_{n} \\
& \vdots  \tag{8}\\
& T_{n+2 k}=C^{2 k} T_{n} .
\end{align*}
$$

The characteristic equation of $C$ is found to be

$$
\begin{equation*}
\operatorname{det}(C-\lambda I)=\lambda^{2 k}-\lambda^{k}-1=0 \tag{9}
\end{equation*}
$$

The Hamilton-Cayley theorem states that every square matrix satisfies its characteristic equation. Hence,

$$
\begin{aligned}
C^{2 k}-C^{k}-I & =0 \\
\left(C^{2 k}-C^{k}-I\right) T_{n} & =0
\end{aligned}
$$

and from (8)

$$
\begin{equation*}
T_{n+2 k}=T_{n+k}+T_{n} \tag{10}
\end{equation*}
$$

From (7) and (10) we have

$$
a_{j}(n+2 k)=a_{j}(n+k)+a_{j}(n), j=0, \ldots, 2 k-1
$$

Thus (1) of our claim is established. The initial conditions for (10) can be obtained from (4) and are given by the $2 k$ column matrices

$$
T_{j}=\left(t_{i 1}\right), j=0,1, \ldots, 2 k-1
$$

where

$$
t_{i 1}=\left\{\begin{array}{ll}
1 & \text { if } i=j  \tag{11}\\
0 & \text { otherwise }
\end{array} \quad i=0,1, \ldots, 2 k-1\right.
$$

From (7) we have that $t_{i 1}=a_{i}(n)$. Hence, $a_{i}(n)=1$ if and only if $i=j=n$, and (2) is established, thus completing the proof of our claim.

From $w\left(w^{2 k-1}-w^{k-1}\right)=1$, we see that

$$
w^{-1}=w^{2 k-1}-w^{k-1}
$$

If we denote the negative powers of $w$ by

$$
\begin{equation*}
w^{-n}=b_{0}(n)+b_{1}(n) w+\cdots+b_{2 k-1} w^{2 k-1} \quad(n \geq 0) \tag{12}
\end{equation*}
$$

then by calculations analogous to those used for the coefficients of the positive powers of $w$, we obtain the following results. The coefficients satisfy the recursion formulas,

$$
b_{j}(n+2 k)=b_{j}(n)-b_{j}(n+k), j=0,1, \ldots, 2 k-1
$$

The initial conditions that are not zero are given by

$$
\begin{array}{rlrl}
b_{0}(0) & =1 & & \\
b_{0}(k) & =-1 & & \\
b_{j}(k-j) & =-1 & & j=1,2, \ldots, k-1, \\
b_{j}(2 k-j) & =2 & & j=k,  \tag{13}\\
b_{j}(j) & =1 & & \\
b_{j}(2 k-j) & =1 & j & =k+1, \ldots, 2 k-1,
\end{array}
$$

The result analogous to (3) is given by

$$
\begin{align*}
b_{1}(k-1+k n) & =(-1)^{n+1} F_{n+2} \\
b_{k+1}(k-1+k n) & =(-1)^{n} F_{n+1}  \tag{14}\\
b_{j}(k-1+k n) & =0, \quad \text { if } j \neq 1 \text { or } k+1
\end{align*}
$$

If we employ (4), (12), and (14), then omitting the argument ( $k-1+k n$ ) from the $a_{j}$ and $b_{j}$, we can write

$$
\begin{aligned}
1 & =w^{k-1+k n} w^{-(k-1+k n)} \\
& =\left(a_{0}+a_{1} w+\cdots+a_{2 k-1} w^{2 k-1}\right)\left(b_{1} w+b_{k+1} w^{k+1}\right) .
\end{aligned}
$$

Multiplying out the right-hand side and comparing coefficients, we obtain the $2 k$ equations:

$$
\begin{aligned}
& a_{k-1} b_{k+1}+a_{2 k-1}\left(b_{1}+b_{k+1}\right)=1 \\
& a_{0} b_{1}+a_{k} b_{k+1}=0 \\
& a_{1} b_{1}+a_{k+1} b_{k+1}=0 \\
& \vdots \quad \vdots \quad \vdots \\
& a_{k-2} b_{1}+a_{2 k-2} b_{k+1}=0 \\
& a_{k-1}\left(b_{1}+b_{k+1}\right)+a_{2 k-1}\left(b_{1}+2 b_{k+1}\right)=0 \\
& a_{0} b_{k+1}+a_{k}\left(b_{1}+b_{k+1}\right)=0 \\
& a_{1} b_{k+1}+a_{k+1}\left(b_{1}+b_{k+1}\right)=0 \\
& \vdots \quad \vdots \\
& \vdots \\
& a_{k-2} b_{k+1}+a_{2 k-2}\left(b_{1}+b_{k+1}\right)=0 .
\end{aligned}
$$

We will consider the $a_{0}, \ldots, a_{2 k-1}$ as the unknowns and solve for $\alpha_{2 k-1}$ by Cramer's rule. If we denote the coefficient matrix by $D$ and use (3) and (14) to replace $b_{1}, b_{k+1}$, and $\alpha_{2 k-1}$, then Cramer's rule yields

$$
F_{n}= \pm \frac{A_{k}}{\operatorname{det} D}
$$

We will complete the proof of the theorem by showing that det $D= \pm 1$.
The norm of $e=b_{1} w+b_{k+1} w^{k+1}$ is given by the determinant of the matrix whose entries are the coefficients of $w^{j}, j=0, \ldots, 2 k-1$, in the following equations:

$$
\begin{aligned}
e & =b_{1} w+b_{k+1} w^{k+1} \\
e w & =b_{1} w^{2}+b_{k+1} w^{k+2} \\
\vdots & \vdots
\end{aligned}
$$

$$
e w^{k-1}=b_{k+1}+\left(b_{1}+b_{k+1}\right) w^{k} \quad \text { (continued) }
$$

$$
\begin{align*}
e w^{k} & =b_{k+1} w+\left(b_{1}+b_{k+1}\right) w^{k+1}  \tag{15}\\
\vdots & \vdots
\end{align*} \quad \vdots \quad . \quad w^{2 k-1}=b_{1}+b_{k+1}+\left(b_{1}+2 b_{k+1}\right) w^{k} . ~ \$
$$

The norm of $e$ is $\pm 1$ since $e=\omega^{-(k-1+k n)}$ and $w$ is a unit．We observe，however， that $D$ is just the transpose of the matrix from which the norm of $e$ was calcu－ lated．Hence， $\operatorname{det} D= \pm 1$ ，and our theorem is proved．

As a concluding note we remark that，if $k=2$ ，then the theorem yields－ with the appropriate choice of the plus／minus signs－the identity

$$
\begin{equation*}
F_{n}=(-1)^{n+1} F_{n+2}^{3}+2(-1)^{n} F_{n+1} F_{n+2}^{2}+(-1)^{n+1} F_{n+1}^{3} . \tag{16}
\end{equation*}
$$

This can also be verified as follows：Replace $F_{n+2}$ by $F_{n}+F_{n+1}$ in（16）and simplify to obtain

$$
\begin{equation*}
F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}=(-1)^{n} \tag{17}
\end{equation*}
$$

Finally，compare（17）with the known［6，p．57］identity

$$
F_{n-1} F_{n+1}-F_{n}^{2}=(-1)^{n}
$$

to complete the verification of（16）．

## REFERENCES

1．J．Bernstein．＂Zeros of the Functions $f(n)=\sum_{i=0}(-1)^{i}\binom{n-2 i}{i}$ ．＂J．Number
Theory 6（1974）：264－270．
2．J．Bernstein．＂Zeros of Combinatorial Functions and Combinatorial Identi－ ties．＂Houston J．Math． 2 （1976）：9－15．
3．J．Bernstein．＂A Formula for Fibonacci Numbers from a New Approach to Gen－ eralized Fibonacci Numbers．＂The Fibonacci Quarterly 14 （1976）：358－368．
4．L，Carlitz．＂Some Combinatorial Identities of Bernstein．＂Siam J．Math． Anaz．9（1978）：65－75．
5．L．Carlitz．＂Recurrences of the Third Order and Related Combinatorial Identities．＂The Fibonacci Quarterly 16 （1978）：11－18．
6．V．E．Hoggatt，Jr．Fibonacci and Lucas Numbers．Boston：Houghton Miffiin， 1969.
＊＊＊が为

## POINTS AT MUTUAL INTEGRAL DISTANCES IN $S^{n}$

## B．GLEIJESES

Istituto di Matematica Applicata，Via Belzoni， 7 I35100 Padova，Italy
In radio－astronomy circles，it is sometimes jokingly speculated whether it is possible to place infinitely many in－phase，nonaligned antennas in a plane （say，vertical dipoles in a horizontal plane）．Geometrically，this means plac－ ing infinitely many nonaligned points in $R^{2}$ ，with integral pairwise distances； and naturally the mathematician wants to generalize to $R^{3}$ and $R^{n}$ ．In $R^{3}$ there is still a physical meaning for acoustic radiators，but not for electromagnetic radiators，since none exists with a spherical symmetry radiation pattern（for more serious questions on antenna configurations，see［2］）．

A slightly different problem is that of placing a receiving antenna in a point $P$ ，where it receives in phase from transmitting antennas placed in non－ aligned coplanar points $A_{1}, A_{2}, \ldots$（in phase with each other）；geometrically，

