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1. IMTROVUCTIOM 
The simple continued fraction expansions of rational multiples of quadratic 

surds of the form [q, b] and [a, b9 o] where the notation is that of Hardy and 
Wright [1, Ch. 10] were studied in some detail in the first two papers [2] and 
[3] in this series. Of course, for a - b - c - 1, the results concerned the 
golden ratio, (1 + /J)/2, and the Fibonacci and Lucas numbers since, as is well 
known, (1 + /5)/2 = [1] and the nth convergent to this fraction is Fn + 1/Fn 
where Fn denotes the nth Fibonacci number. 

In this paper, we consider the simple continued fraction expansions of 
powers of the surd £ = [#] and of some related surds. We also consider the 
special case (1 + /5)/2= [1] since statements can be made about this surd that 
are not true in the more general case. 

2. mELmiHARV CONSIDERATIONS 
Let a be a positive integer and let the integral sequences 

ifn}n>o and ign}n^o 
be defined as follows: 

/„ = 0, A = 1, fn = afn.x + fn-z, n > 2, (1) 
and 

Go = 2> 0 i = a> 9n = a9n-l + ^ n - 2 ' U >• 2' ( 2 ) 

These difference equations are easily solved to give 

fn = ^ ^ * n > 0 , (3) 
/a2 + 4 

and 

gn = C +Xn, n>0, (4) 
where 

5 = (a+/a2 + 4)/2 and 1 = (a-/a* + 4)/2 
are the two irrational roots of the equation 

x2 - ax - 1 = 0. (5) 

Of course, these results are entirely analogous to those for the Fibonacci 
and Lucas sequences, {Fn} and {Ln}, and many of the Fibonacci and Lucas results 
translate immediately into corresponding results for {/„} and {gn}. For exam-
ple, if we solve (3) and (4) for /„ and gn in terms of ^n and ~fn, we obtain 

9n + fJ^ + 4 

r= 9 w and 

A l s o , s i n c e 

gn - fj<? + 4 
F = o - • <7> 

_ q + / q 2 + 4 q - / q 2 + 4 _ q 2 - (q 2 + 4) _ 
^ " 2 2 4 

i t fo l lows t h a t 
22 - («2 + 4)f„2 

(_!)» = ETXn = 7. (8) 
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and also that 

(9) 

We exhibit the first few terms of {/„}and {g„} in the following table and note 
that both sequences are strictly increasing for n >_ 2. 

n 

fn 

9n 

0 

0 

2 

1 

1 

a 

2 

a 

a2 + 2 

3 

a2 + 1 

a3 + 3a 

4 

a3 + 2a 

ah + 4a2 + 2 

5 

ah + 3a2 + 1 

a5 + 5a3 + 5a 

The following lemmas, of some interest in their own right, will prove use-
ful in obtaining the main results. 

Lemma 1: For n > 1, 

[a] [fZn/a2 + A] = g2n - 1, 
(bJ [ /2»Va 2 + 4] = g-^.!. 

Vftooj oj (a): By (8), 

(a2 + 4)/2
n = <?L - 4 > <72

n - 2g2n + 1 

since 2g2n - 1 > 4 for n > 1. Therefore, 

A>2 + * >.?2» - ! 
for n > 1. On the other hand 

so that 
•9 In > g\n - 4 = (a2 + 4 ) / 2

n , 

#2n > f2n^ + * 
for all n. But (10) and (11) together imply that 

(10) 

(11) 

1 [ / • 2 > 2 + 4] = ^2„ 
for n > 1 as claimed. 

V/L00J OJ (fc>): Again by (8), 

so that 

Also, for n > 19 

/ 2 n - l ^ 2 + 4 = Mn-1 +4 0 2 » - : 

so that 
^2»- i + L ) 2 - <&-i + 292n-i +• 1 > d n - i + 4 = (a2 + 4 ) / 2

n _ 1 

2n.x + 1 > / 2 „ V « 2 + «• 

(12) 

(13) 

Thus, from (12) and (13), 

f / ^ . / a 2 + 4] - ff^., 
and the proof is complete. 
Lemma !•• For n > 1, 

(a) [<72„/a2 + 4] = (a2 + 4) / 2„ , 

(t>) [^2„-i^2 + *I - ( ^ + 4 ) / 2 »- i " 1-
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PttOOJ: The argument here is quite similar to that for Lemma 1 and is thus 
omitted. 

3. THE GENERAL CASE 

The first two theorems give the simple continued fraction expansions Of E,n 

and ?n» 
ThtoKom 3: For n >. 1, 

lb) ^ - [*2ll - i . i . ^ - 2 ] . 
Vtiaofji S ince i t i s w e l l known t h a t '[g2n_1] conve rges , we may s e t 

X " [ ? 2 n - l ] " ? 2 » - l + £ ' 
Thus, 

^ " x32n-i - 1 = 0 
and hence, using (8) and (6), 

g 2 n - l + / g L - l + A g 2 H - l + ^ 2 n - l / g 2 + 4
 r 2 n . x 

2 2 
and this proves (a). Also, set 

y = [ i , ff2'„ - 2] = i + , 2 - n / ^ 
y 2 n ^ 

so t h a t 
y2(92n - 2 ) - y ^ 2 „ - 2) - 1 = 0 . 

Then, 
92n - 2 + A g 2 n - 2 ) 2 + 4 ( g 2 „ -~5) g2n - 2 + / g * n - 4 

^ " 2 (g 2 n - 2) = 2(g2n - 2) 
and, aga in u s i n g (8) and ( 6 ) , 

! 2(?2» " 2 ) 
[g 2 n - 1 , 1, g2n - 2] = gln - 1 + - = g2n - 1 + 

g„ - z + / g ; ^ <7, " 2 + A 
^ + ^ I~4 ~ + f / a 2 + 4 
y 2 n s 2 n y 2 n J 2n C2" 

as c l a imed . 

Tk&otiQjn 4: For n_> 1, 

(fa)- I2* = [0, g2n - 1, i, g'2n - 2]. 

P>L00_£: From (9) we have immediately that 

T2" - __L_ o«/l -F2"-l = ; and ¥ 
r'2n rln-1 

Since ^2n = [#2n - ls 1, #2n - 2] from the preceding theorem, it follows that 
X2n = [0, g2n - 1, 1, g2n - 2] as claimed. We also have from the preceding 
theorem that 

5 2 - 1 = [«72'„-i] 
so that 1 

- ~ = [0. ?2».ll-
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But it is well known that if a is real, a = [a0, a1 , a2, ... .] and a± > 1, then 
-a = [~(a0 + 1),• 1, ax - 1, a2, . . . ] . Thus, it follows that 

~2w-l _. 1 
2n_1 L -9 -9 »2n-l *' ^2n-l J t"1' 1. ̂ . , " 1» #9 

and the proof is complete. 
Recall that two real numbers a and 3 are said to be equivalent if there 

exist integers A9 B% C9 and D such that \AD - BC\ = 1 and 
A$ + B 

a C$ + D' 

We indicate this equivalency by writing a ~ |3» Recall too that a - 3 if and 
only if the simple continued fraction expansions of a and $ are identical from 
some point on. With this in mind we state the following corollary, which fol-
lows immediately from the two preceding theorems. 

Cosiotla/Ly 5: If n is any positive integer, then ?n ~ \n« 

Noting the form of the surds 

gn +fn/a* + 4 gn - fn/a2 + 4 
E;" 2 a n d £ " 2 ' 

it seemed reasonable also to investigate the simple continued fraction expan-
sions of surds of the form 

a$m ± LJa2 + 4 af ± g /a2 + 4 

and so on. It turned out to be impossible to give explicit general expansions 
of these surds valid for all a, m9 and n, but it was possible to obtain the 
following more modest results. 

TkaoKQJfn 6** Let a be as above and let m9 n, and r be positive integers with 
m = v E 0 (mod 3) or mr % 0 (mod 3) if a is odd. Also, let {un} be either of 
the sequences {fn} or { n̂} and similarly for {vn} and {^n}. Then 

aum + u n 

~ 2 ' ' 2 
and ^ „ _ _ _ 

aum + wn/a2 + 4 ay r - wn/a2 + 4 

FVLOO£: We f i r s t n o t e t h a t , i f a i s odd, /„ = ^ n E 0 (mod 2) i f n = 0 (mod 
3) and / „ E j n E 1 (mod 2) i f n ? 0 (mod 3 ) . Thus um ± vT E 0 (mod 2) i f and 
only i f 77Z E p E 0 (mod 3) or tfzr ^ 0 (mod 3 ) . To show t h e f i r s t e q u i v a l e n c e , 
l e t A = 19 B = a(um - vr)/2.9 C = 0 , and D = 1. Then B i s an i n t e g e r , s i n c e 
e i t h e r a or um - vr i s d i v i s i b l e by 2 by t h e above. Moreover, 

A < 

a • 

a y r + wnva2 + 4 
..1 p 

2 ' ^ 
a y r + wn/a2 + 4 

. _ ^ + n 

a^j. + wnva2 + 4 a (u m - y r ) 
+ 

a^P + wn/a2 + 4 

aum 4- wJa1 + 4 
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and this shows the first equivalence claimed, since \AD - BC\ = 1. Since the 
proof of the second equivalence is the same, it is omitted here. 

Co/ioZLany 7*' If m and n are positive integers9 then the surds in the following 
two sets are equivalent: 

af„ + gja2 + 4 af„ - gja2 + 4 

and 
lb) 

2. » 2 

agm + aJa2 + 4^ agm - gja2 + 4^ 
_ __ _ _ 

agm + fja2 + 4 a ^ - fJdTVl. 

2 9 2 

PtLOOfi: The first of the above equivalences follows immediately from the 
second equivalence in Theorem 6 by setting v = m9 um = fm$ and w„ = gn and the 
others are obtained similarly6 

ThzoKm Si Let a be as above and let m > 0 and n > 2 denote integers. Also9 
let x = a/m + (a2 + 4)/n and z/ = agm + (a2 •+ 4)/„ . Then 

a 4 + ̂ n ^ 2 + 4 . . • a^m + gja2 + 4 
2 = Cao » a i ' • • • > a^] arld —f- — = [*o » ̂ i» °  9 a * a*>] 

where the vector (ax , a2 9 * . . s a2,_1)- i s symmetric and 

av = 2a0 - afm = 2fc0 - a#w. 
Also 

where 

«/w + (^2 + *)/« - £ 
-y— and fc0 

^ m
 + (a1 + 4)/„ - e y - c 

i = 0 i f n E a; = 0 (mod 2) , 
b = 1 if x = 1 (mod 2) , 
& = 2 if n - i E x E 0 (mod 2) 3 
a = 0 if n = z / E 0 (mod 2) , 
c = 1 If y = 1 (mod 2) , and 
c = 2 if n - 1 E z/ E 0 (mod 2) . 

Pfiooj: Let v = (afm + gn/a2 + 4 ) /2 . Then9 by Lemma 29 

V w + \gJaF^~k\ 
a0 = [v] 

z/w + gja2 + 4 

fa/m + (a2 + 4)/n" 

ra/OT + (a2 + 4)/„ - r 

n even, n > 2 

» n odd9 n > 2 

afm + (a2 + 4)/„ - & 

where i t i s c lear that 
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2? = O i f n = i r = 0 (mod 2 ) , 
b = 1 i f x = 1 (mod 2 ) 9 and 
i = 2 i f n - l = a = 0 (mod 2 ) . 

Thus a0 is as claimed. Moreovers 0 < v - aQ < 1, so if we set vr = l/(v - a Q ) , 
it follows that 

V, > 1. (14) 
Taking conjugates, we have that 

1 -2 vx = — — = = — - ± — .— _ _ _ = _ _ _ _ _ ±—^^= ( 1 5 ) 
afm - gja1 + 4 afm + (a 2 + 4)fn - 2? (a 2 +• 4 ) / n - & + # n / a 2 + 4 
_ . - _ _ _ _ . 

and i t i s c l e a r t h a t 

- 1 < Vx < 09 (16) 
since a and n are both positive. But (14) and (16) together show that v± is 
reduced and so, by [49 p» 101]s for example9 has a purely periodic simple con-
tinued fraction expansion [a19 a2, . ..9 dr]. Thus 

v = __ = [aQj V i] = [aQ9 a19 a2, ..., a,]. (17) 

On the other hand, again by [49 p. 93], 

- J - = [ a r , a p „ 1 5 . . . 9 a j . (18) 
But then 1 

x (a2 + 4 ) / n - fi + gja1 + 4 
_ . _ . _ _ _ _ _ 

^ - + gn&~T^ afm + fn (a2 + 4) - b 2afm 

2 ' 2 2 
= .v + a0 - afm = [2a0 - a / - , a 1 5 a 2 , . . . , a r ] . 

Comparing (18) and (19) 9 we immediately have t h a t 2a0 - afm 
a 2 = av-?> •••» a P - i = a i e This completes t h e proof for V. The proof fo r y =? 
(a<7m + gni/az + 4 ) / 2 i s s i m i l a r and i s o m i t t e d . 

The fo l lowing theorem i s s i m i l a r t o Theorem 8 and i s s t a t e d w i t h o u t p roof . 

Tk&OfL&m 9? Let a be as above and l e t m > 0 and n > 2 denote i n t e g e r s . A l s o , 
l e t x = afm + gn and z/ - a#m + gn. Then 

*/* + / n ^ T T e e a^m + f n / a 2 + 4 
— — = [cQ9 Q19 . . . 9 or] a n d - — ^ = t^o» c i » •*••» ^ 

where t h e v e c t o r ( ^ 9 c 2 9 . , . , <2r-i) i s symmetric and 

<?- = 2oQ - a/m = 2^0 - ag m . 
Also 

a f + q - 2? -, aqm + q„ - c 
Jm yn x - b j m n y - C 

<?Q = • 2~~— = 2 ° = 2 = —2~~~ 
where 

i) = 0 i f n - 1 E x E 0 (mod 2) s 
b = 1 i f x = 1 (mod 2 ) , 
1? = 2 i f n E i E 0 (mod 2 ) , 
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c = 0 i f n - 1 = 1/ = 0 (mod 2 ) , 
Q = 1 i f y = 1 (mod 2 ) 9 and 
£ = 2 i f n E 2 / E O (mod 2 ) . 

Th&OH&m 10'- Let m9 n, and a denote positive integers and let {un} and {vn} be 
as in Theorem 6. Also9 let 

aum + vnva2 + 4 
2~ ~ = tao5 ^i9 a*e> ^ s 

(a.) If a1 > 1-, then 

aum - vn/a2 + 4 
2 = ^~ao + a M^ - 1» 1, a^ - 1, a2, ..., ar9 ax] 

(fa) If ax = 1, then 

aum - vn/a2 + 4 
2 — ~ = [-̂o + aUm ™ U a2 + 19 a39 ..., ars a2 9 d 1]. 

Vtiool 0& [a] i Let ri = (awm + vnVa2 + 4)/2. Then by hypothesis, 

n = [aQ9 d19 ...9 aP] 
and 

But then 

= [a29 ..., arS a1], 

n - a 0 •«• 

[-a0 + auOT - 19 19 ax - 19 a2, ...9 ap9 dx] 

= -a0 + awm - 1 + 
1 

1 + 
1 + 

n - a0 

= aum - n 

coin Un/a2 + 4 

as claimed. 

P/LOÔ  o^ (fa)-' If ax = 19 the above analysis still holds except that ax - 1 
= 09 so that we no longer have a simple continued fraction. But then9 we im-
mediately have that 

aum - vnva2 + 4 
— ~2 ™~ = [~ao + aum - ls 19 09 d29 ... , ar, ax] 

= [~a0 + aum - 19 1, 09 a29 d39 ..., ar9 a±9 a2] 

= [-a0 + aum - 1, a2 + 1, a39 ..., ap9 al9 a£] 

and the proof is complete. 

Interestingly, it appears that the integer v in the above results is always 
even but we have not been able to show this. Also, while it first seemed that 
v was bounded for all a9 ms and n9 this now appears not to be the case. For 
example9 if a = 4 and we consider the related surd, fm + gn^59 ? is sometimes 
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quite large and appears to grow with n without bound. On the other hand9 if 
a = 2 9 and we consider the related surds 9 f m + 9n^2 and gm + gnJl9 it can no 
doubt be shown that r equals 2 or 4 according as n is even or odd, and that for 
fm + fn^- an^ 9m + fn^s r ecLU8L^-s 1 or 2 as n is odd or even. 

4. SPECIAL RESULTS WHEN a = 1 
Of course, all the preceding theorems hold when a = 1, in which case 

5 = (1 + /5)/2, fn = Fns and gn = Ln 

for all n. On the other hand, in this special case, far more specific results 
can be obtained as the following theorems show. Note especially that through-
out the remainder of the paper we use 77? and k to denote a positive integer and 
a nonnegative integer, respectively. 

Tknon.Qm 11: If 3\m and n = 2 + 6k or 4 + 6/c, or if 3 

and 

Fm + Ln/5 

Lm + L„/5 

S7 KW 
2 » Ln s -JJ-n 

£ w + 5FW 
, r n , Jrn 

m and n - 6 + 6/c, then 

VKOO^i It is immediate from the hypotheses and Theorem 8 that 

and that 

Let 

Fm + £„/5 

Lm + Ln/5 

Fm + 5F„ 
2 5 ai5 

Lw + 5Fn 

-, a, 

., ar 

, CL-p 

Then 
w + 1 

n 5F„ + x 
x2 + 5Fnrr - 5 = 0, 

and, since x is clearly positive and 5F2 + 4 = Lj is a special case of (8), 

-5*L + /l5F2 + 20 -5F„ + L„/5 
a: 

But then, 
_ . 77 5 77 

2 » ^ J J i n 

Fm + 5F„ -5F + L„/T F + £„/5 
+ 

and similarly, 
Lm + 5F„ 

_, rn , 3 r n 

Lm + L„/5 

as claimed. 
The/)Jim 11: I f 3|77? and n = 5 + 6/c or 7 + 6/c, or i f 31777 and n = 3 + 6/c, then 

and 

^ + ^V5 

Lm + LM/5 

Fm + 

I'm + 

5£n -
2 

5Fn -

- 2 

- 2 

j 15 -Fn - 2 , 1, 5Fn 

, 1, F„ - 2 , 1, 5i?n - 2 
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1M9A: A g a i n it is immediate from the hypotheses and Theorem 8 that 

Fm + L n / 5 
s ££-i 9 o . o 9 Q,r 

and t h a t 
K +W.^ K + 5Fn - 2 

y U - . J ' • • 9 ^ 3 ? 

Then, since n is odd, we have from Theorem 3 of [2] that 

x = [ 1 , Fn - 2 , 1, 5Fn - 2] 
L„ + Ln/5 

K^ + 1-
Thus9 

>M + 5Fn - 2 
- 9 1 9 r ^ Z s l 9 3 r n Z 

Fm 

Fm 

Fm 

^m 

+ 

+ 

+ 

+ 

-"- n 

2 

5F -

2 
5Fn -

2 

L n / 5 

2 

2 

2 

+ X 

n n " n ^ n + l 
+ - — • • • • 

~5Fn + Ln/5 + 2 

S i m i l a r l y 9 

Lm + 5Fn - 2 . 
~9 —9 1 J ^n - 2 s 19 5Fn - 2 

Lm + Ln/5 

and t h e proof i s comple te . 
IhdOKm 7 3 : If 3|m and n = 6 + 6/c or 9 +. 6/c, or i f ?>\m and n = 4 + 6fe, 5 + 6k9 
7 + 6&9 or 8 + 6ks then 

Fm + Ln/5 
= [aQS d15 s. . s aP] and 

Lm + Lj5 
= [ b Q 9 dl9 ..., a r] 

with a0 = (FOT-+ 5Fn - l)/29 b0 = (Lm + 5Fn - l)/29 aP = 5Fn - 1, and where the 
vector (a19 . e . 9 a^.^ is symmetric* 

Vtioofc This is an immediate consequence of Theorem 8. 

The only surds of the form (Fm + Ln/5)/2 and (Lm + Ln/5)/2 not treated by 
the above theorems are when 3\m and n = 1 or 3, and when 3Jm and n = 1 or 2. 
For these cases, the results are as follows * 

(a) If 3\m, then 

Fm + 2 ^ / 5 
2 

£m + £ / 5 

2 
Fffl + L3/5 

2 

^ + 1 . 
1 

O 9 -JL 

r̂  
£« + 1 . 

1 
2 ' X 

5 

9 

fc + 7 . 
1 

O • » •»• 9 34. 
-

1. 7.1 
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and 

(b) If 3\m, then 

£m + V 5 Lm + 7 
-, 1, 34, 1, 7 

and 

TktoKem 75: 

Fm + V 5 

Lm + Ll/5 

Fm + L2/5 

Lm + L2V5 

Fm + 2 

X 

X 

X 

2 

+ 

2 

+ 

2 
+ 

2 

6 

6 

, 8 , 2 

, 8 , 2 

, 2 , 1, 4 , 1, 2 , 6 

, 2 , 1, 4 , 1, 2 , 6 

(a) If 3|m and n = 4 + 6 / c o r n = 8 + 6k, or i f 3|m and n = 6 + 6/c, then 

-, 1, Fn - 1, 5F„, Fn\ 

and 

Fm 

Lm 

- Ln/5 
2 

- Ln/5 

Fm " 

X • 

" Fn • 

2 

- F -

- 2 

- 2 
9 1 s £ n 1 s - ^ r c 9 ^n 

(6) I f 3Jtfz and n = 5 + 6k or 7 + 6fc, or i f 3|m and n = 9 + 6k, then 

and 

Fm - Ln/5 

Lm - Ln/5 

Fm ~ 5Fn 
-, F„ - 1, 1, 5Fn - 2 , 1, Fn - 2 

Lm - 5Fn 
- F - \ 1 5F - 2 1 F - 2 

(c) Let (Fm + L n / 5 ) / 2 = [ a 0 , a x , . . . , a r ] a s i s always t h e ca se from Theorem 8. 
I f 3|77? and n = 6 + 6k, or i f 31777 and n = 4 + 6k or 8 + 6fc9 then 

and 

*"» - Ln/5 

Lm ~ L„/5 

5Fn - 1 
-, a2 + 1, d 3 , . . . , a r , a x , a2 

2 » a 2 + 1» a 3 ' • • • ' a r ' a i ' a2 

And i f 3\m and n = 9 + 6fe, or i f 3\m and n = 5 + 6/c or 7 + 6fe, then 
\Fm - 5Fn - 1 

g , 1, a1 - 1, a 2 , . . . . ap, a^ 
Fm ~ Ln/5 

and Lm - Ln/5 
-9 1, ax - 1, a 2 , . . . . . . ap 5 ax 

The p r eced ing theorem omits t h e c a s e s when n = 1, 2 , or 3 . These c a s e s a r e 
t r e a t e d in t h e fo l lowing r e s u l t , which i s a l s o s t a t e d w i t h o u t p roof . 

TkdOKQm 16: 

(a) I f 3|?775 t h e n 
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and 

(fa) If 3\m9 then 

and 

Fm ~ L^/5 

K 

Fm 

Lm 

Fm 

Lm 

2 

- Z^/5 
2 

-L2/5 
2 

- L2/5 
2 

-L/5 
2 

-L3/5 

m 
2 

m 
2 

"p _ 

2 

m 
2 

m 
2 

\ ~ 

3 

3 

7 

7 
3 

9 
5 

9 
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-, 2, 1 

* -1 
-, 2, 1 

-, 69 1, 51 

7 # T 
-, 69 i, 5 

-, 35, 1, 79 1, 34 

173 

Fm 

Lm 

F 

^m 

Fm 

Lm 

- Z^/5 
2 

2 
- L/5 

2 
- L /5 

2 
2 

- L 3 / 5 
2 

- L / 5 

^ 

i» 

* • * . 

_ 
2 
-

2 
-

4 

4 

8 

, 35, 1, 7, 1, 34 

, 1-, 75 2, 8 

, 1, 7, 29 8 

, 1, 1, 1, 4, 1, 29 6, 2 

-, 1,. 1, 1, 49 1, 29 69 2 

10 
-, 1, 1, 89 2 

£« - 1 0 
-, 1, 1, 89 2 

We close with two theorems which give the expansions for (Fm ± Fn/5)/2 and 
(L ± Fn/5)/2 for all positive integers m and n. Again, these theorems are 
stated without proof. 

Thuonm 17 
[a] If 3Jm and n = 1 + 6k or 5 + 6&, or if 3|w and n = 3 + 6k, then 

1 ^m + Fn/5 

and 
Lm + F„/5 

Fm + Ln 

K + L„ 
"s E*n 

(fa) If 3Jm and n = 2 + 6k or 4 + 6fc9 or if 3|w and n = 6 + 6k, then 
L/?2 ' "-n ' 

and 

^ + ^n ~ 2 
"s 1 5 - ^ n ~ 2 
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K + ?n^ Lm + Ln ~ 2 

-, 1, L n - 2 

(c) Let (Fm + F n / 5 ) / 2 = [ a 0 , % , . . . , a ] . I f 3|m and n = 3 + 6k or 6 •+ 6/c, 
or i f 3 b and n = 2 + 6/c, 4 + 6/c, 5 + 6/c, or 7 + 6/c, then 

and 

F + F /5 

Lm + F„S5 

Fm+Ln-
2 

X + K -

- I 

- i 
9 a L , . . . , a r _ 1 , Ln - 1 

and the vector (a±, ..., a
r-0 i-s symmetric. 

(d) If 3|w2, then 

and 

Ihdonm 1S 

Fm + ^ 
2 

2 

F + 2 

2 

\ + 2 

2 

-, 8, 2 

, 8, 2 

(a.) If 3|tfz and n = 5 + 6k or 7 + -6/c, or i f 3\m and n = 3 + 6/c, then 

F - F /5 

and 
i m - FnS5 

Fm 

Lm 

~ 

" 

Ln 

2 

^n 

-

-

2 

2 
5 1 , L n - 1 , L „ 

(6) If 3|TW. and n = 2 + 6/c or 4 + 6/c, or i f 3|m and n = 6 + 6/c,- then 

-, Ln - 1, 1, Ln - 2 

and 

^m 

i » 

- ^ n / 5 
2 

- F / 5 
n 

*» 

i m 

" £ » 
2 

- ^ n 

(c) Le t 

and l e t 
(Fm + F n / 5 ) / 2 = [ a 0 , a x , . . . , dr] 

(Lm + L n / 5 ) / 2 - [b0, a 2 , . . . , a p ] . 

I f 3|m and n = 3 + 6/c, or i f 3|m and n = 5 + 6k o r 7 + 6k, then 

and 

4, 

Lm 

~ Ln/5 

2 [a 0 - av - 1, a 2 + 1, d 3 , . . . , a , a x , a2] 

2 [b0 - a r - 1, a 2 + 1, a 3 , , a p , a x , a 2 ] . 

I f 3|m- and rc = 6 + 6/c or i f 3|m and n = 4- + 6/c or 8 + 6/c, then 

^ " ^ 
= [a 0 - a r - 1, 1, 1, a 2 , . . . , a P 9 a 1 ] 

and 
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Lm - LJS 
[b0 - ar - 1, 1, 1, a? ar» a x ]. 

(d) If 3|m, then 

and 

If 3 7W 9 then 

and 

L 

F 

m 

Fm - F x / 5 Fm -

2 " I 2 

Lm - ^ / S 

2 
£« -

2 

- ^ / S Fm - F 2 / 5 

2 2 

- ^ / S Fm - F/5 

2 2 

3 
5 Z , 1 

3 
9 i 

9 z9 1 

>m " ^ 
2 

X -* 
2 
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BENFORD'S LAW FOR FIBONACCI AND LUCAS NUMBERS 

LAWRENCE C. WASHINGTON 
University of Maryland, College Park, MD 20742 

Benfordfs law states that the probability that a random decimal begins (on 
the left) with the digit p is log10(p + l)/p. Recent computations by J, Wlod-
arski [3] and W. G. Brady [1] show that the Fibonacci and Lucas numbers tend to 
obey both this law and its natural extension: the probability that a random 
decimal in base b begins with p is log^(p + l)/p. By using the fact that the 
terms of the Fibonacci and Lucas sequences have exponential growth, we prove 
the following result. 

TkzoKem: The Fibonacci and Lucas numbers obey the extended Benford's law. More 
precisely, let b J> 2 and let p satisfy 1 <_ p <_ b - 1. Let AP(N) be the number 
of Fibonacci (or Lucas) numbers Fn (or Ln) with n <_ N and whose first digit in 
base b is p. Then 

±Apm -iogi(2-±^). 
VKQOfc We give the proof for the Fibonacci sequence. The proof for the 

Lucas sequence is similar. 
Throughout the proof, log will mean logfc8 Also, <as> = x - [x] will denote 

the fractional part of x« 
Let a •= Jg(l + /5) , so Fn = (an - (~a)~n)//5". We first need the following: 

Lemnat The sequence {<(n log oc>}^=1 is uniformly distributed mod 1. 

lim 
N + °° 


