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SOME GENERALIZATIONS OF A BINOMIAL IDENTITY
CONJECTURED BY HOGGATT

L. CARLITZ
Duke University, Durham NC 27706

To the memony of Vernern Hoggatt

1. INTRODUCTION

In November 1979 Hoggatt sent me the following conjectured identity. Put

__ 1 m-r\yynm-»r-1 .
Smr'_"—'r+1<z= )( ’ ) (n>2r+1; r>0). (1.1)
Then
r-1 n-1
Sparn = Sy n +;?:’ S5 kS jtipexr 220+ 157> 1), (1.2)
=0 j=1

I was able to send him a proof of (l.2) that made use of various properties of
special functions.

In this note we first sketch this proof. Next, using a different method,
we obtain some generalizations of (1.2). 1In particular, if we put

p __1 m-r\\In-r-p .
S"’”_r+l(r>< ; ) (n > 20 +p; »>0), (1.3)
where p is a nonnegative integer, we show that
P+ @ S e L@
@ + @Sn) 7= DSt @Snpr F DAY, D, 55 e Sntiamann (1.4)
Jj=0 8=0
(®>0,q>0,r>0)
and
(P+9) @ e
@+ D8, = @+ DS P, 3= 88, 5 i s (1.5)
Jj=0 8=0

>0, ¢g>0, »>0).

We remark that (1.4) is implied by (1.5).
The special case p =1, g = 0, of (1.5) may be noted:

n - p\2 n-2 r-1 j - s\2
&+ 15, , =( ) ) +3 Z( ) R (1.6)
Jj=0 s=0

For additional results, see (7.7) and (7.8) below.

Remark: The close relationship between the identities of this paper and ultra-
spherical polynomials suggests that even more general identities can be found
that are related to the general Jacobi polynomials. This is indeed the case;
however, we leave this for another paper.

SECTION 2
Put

o

e U (PRl D iyt

n=2r+1 n=2r+1
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It follows that

x2r+1
(l -x) 2r+1

where ¢,(x) is a polynomial in x. To get an explicit formula for ¢,(x), re-
write (2.2) in the form

fp @) = ¢, (x), (2.2)

x2r+l¢r(x) = (1 _ x)2r+lfr(x).

1 rile=(n +r\(n +r + 1\ _,
9, (@) = ;-;*T(l - x)? +15§%( ” >( ” >x

2r+1 ©
1 if2r + 1\ s +r\/fn+2r+1
r+ 1 D ( J )x E:( r )( r )xn

Thus

i=0 n=0
1o g2+ N\[fm -G +r\fm-F+r+1
=r+12”m2(_1)a< J >< " )( - ) 2.3)
m=0 Jj=0
j<m

Since the product
m-g+r\(m-g+r+1
r r
is of degree 2r in j, it follows that the inner sum in (2.3) vanishes for
m> 2r + 1.
Thus we need only consider m < 2r. Hence the sum is equal to

<n + r)<m +r + l) 55 (=2r = 1); (=m) ; (=m = 1)
r r ey’ Jt(-m - p)j(_m - 7 - 1)j’

(@); = ala + 1) ... (a+J - 1.
Applying Saalschitz' theorem [1, p. 87], we get
maeym e+ T Dp (4D, r+lfr\(r-1
( r )( r (-m - r), (r + 2), “m+ 1\m m )°

We have, therefore,

S 1 [r\r - 1\.n
0@ =Y ()0 )em ez (2.4)

m=0

where

For » = 0, it is clear that
Py (x) = 1. (2.5)
In hypergeometric notation, (2.4) becomes
$,(x) = ,F [-r + 1, -r; 1; x]. (2.6)
On the other hand [1, p. 254, Eq. (2)],

If we put




SOME GENERAL IZATIONS OF A BINOMIAL IDENTITY

202 CONJECTURED BY HOGGATT [Aug.
this becomes
R S npa,(l+y
L - - 15 25 yl= P 1(1 -Y) P, 1-y)
Thus, by (2.6),
_ 1 _ roa,nfl +tx
bpp1 @) =570 - 2P, (—1 — ) (2.7
We have also the generating function [1, p. 271, Eq. (6)]
SPM D (et = 2207 (A + £+ ) (A - £+ )71,
where n=o
= (1 - 2zt + tH)Y2,
Thus
(l+t+p)(1 -t+p)=2( -xt+p),
so that
PV ()" = 207H(L - at + p) L. (2.8)
n=0
It can be verified that if
1l -xt+p
¢ = t
then
o _ ot -1
dt p(l - xt + p)°
Comparison with (2.8) gives
- 1 (1, 1) n+l _ 2 1l -xt -p
Zn+lp @7 = Z . (2.9)
n=0 X

Now replace x by (1 + 2)/(1 - x) and replace t by (1 - x)z. The result is

f: L -arpmv(LlE x)z" _l-(Q+®a-/1-20+x)z+ (1 - x)2z
nrl -z 2x2°

Thus, by (2.7), we get

© _ 2,2
2: ¢r+1(x)3r _1l-0A+xz - /1 - 2(; +x)z+ (1 - x)°z i (2.10)
r=0 220z

SECTION 3

We now rewrite the identity (1.2) in terms of the polynomial o, (x). To be-
gin with, (1.2) can be replaced by

r-1n- r-1

Sn+1,P=n,r+EZ knJlrkl+ZSn1kSOPkl
k=0

=Sn,r+ n1r1+z Zs,knJlrkl

=0 j=1

Then multiplying both sides by x"*! and summing over n we get
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2: Sn+l’rx”+ = 2: S, px™ + 22 E: Sn’r_lm"
n=2r+1 n=2r+1 n=2r
r-1 o w
+ac2§: Z S; gz’ Z S k&
k=0 j=2k+1 n=2r-2k-1
In view of (2.1), this becomes
2 =y
A -a)f, @) =z°f, @) +x*Y f @), @.
Hence by (2.2) we get L k=0
.
9, (@) = (1 - )¢, ;@ +xY 6, @0, , @ @=1). (3.1)
k=0

For example, we have
b, @ =1, ¢p,(@ =1+, ¢,@) =1+ 3z +2”, ¢p,() =1+ 6x + 6% + 2°

in agreement with (2.4).
Next put

©

Fo=Fx, 2) = 3. 0,(x)z";

=0
then it is easily verified that (3.1) gives
F=1+ (1 - x)aF + xaF?. (3.2)
The solution of (3.2) such that F(x, 0) = 1 is

1-(l-x)z-/1-2(1L+x)z + (1L - x)2z?

F= 2xz
Since
F-1 -
=20 (@aT,
we get r=0
ﬁi ¢ (£)z" = 1 - (L +x)z - /1 - 2(1 + )z + (1 - x)zzz. (3.3)
ot r+1l 9052

Comparison of (3.3) with (2.10) evidently completes the proof of the desired
result.

SECTION 4

To generalize the above, we take

S(p) - 1 (n - r)(n -r - p) 4.1)

n,r r + 1 r r
and
p
@ = 2 St 4.2)
n=2r+p

where p is a fixed nonnegative integer. Clearly
2r+p :
x )
£ @ = —E—— P, (4.3)
(l _ x)2P+1

where ¢(P)(x) is a polynomial x. It is evident that
r
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Sup = S0 fo@ = FP @, ¢, = ¢ @).
Exactly as in the proof of (2.4) we find that
() (r + p)! r-p k
¢, @) = (r + D! E(m+ Dp m zt (P27 (4.4)
and .
P (r + p)! (=D" <r)p—r+m-1> ,
9,7 = (Hl),mg(mﬂ)p . M " (> 7). (4.5)
In hypergeometric notation, both (4.4) and (4.5) become
+p)!
¢1§P)(x) = (.zf’r+ l)zp! Fl-r + p, -r; p + 1; x]. (4.6)
Note that ¢(p)(x) is of degree r - p for p < r and of degree r for p > r.

Since [1l, p. 254, Eq. (2)]

@+ 1) (x + 1\

(p,p) - e Lx =1
B @) = = \2>F[”’ i p’ZD“Ll’ac+1:|’
it follows that
(P, P) _rt (p,p) (1l + x
¢r+p(x) @ + l) (1 - x)" P, (1 — ac) 4.7
SECTION 5

We shall now obtain a generating function for Sff)r in the following way.

We have
© o © 2r 210+p p
a7 (m - P>(7’L -r - p>xmyn = XY
Z=: % .z r g 220 1 -t a-yrt
yP((1 - 2)(1 - y) - z’y?z)"*

yP(l + xy - x%y?z - (x + y)) .

Replacing x by xy‘l, we have

er - i (m - r)(n - i - p)xmyn—m = yP(l +x - 22z - (@y~t +y))?

r
m= 2r~ n=2r+p

o -1 k
=yP(l+x-a’2)t Yy (g~ +y)
k=0 (1 + 2 - x2z)*

= (1 +x - x?2)7° i <'j Z k)

J k=0 (1 +x - 2%z

xjyk—.ﬂp

j+k "
)

Since we want only the terms on the right that are free of y, we take j=k+p.
Thus

o

S n-r n-r-p)n_ _z_p-lw(2k+p\ x
2 x" = (1 +x - x°2) .
rgo n=z;+p( )< r kz=:0 k /(1 + x - xzz)Zk
Since [1, p. 70, Ex. 10]

p
- 2k+p)k [p+1p+2 ] -1/2 2
zk = Fl=~——7-, s p+ 13 4z = (1 - 42) s
Z( k 2 2 1 + (1_42)1/2

k+p
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it follows easily that

o o P - - 14
DD M A e ma) ISR (5.1)
r=0 n=2r+p
where
R =R(x, ) = ((1 - 2% - 2(1L + x)z + g2)/2, (5.2)
Since

it is easily verified that

Hence (5.1) yields

p - = (P) - - p
9_0p_+ Y oarel 30 5 pnerr .;_<_‘___~__1 + @ - R) @ > 0). (5.3)
r=0 n=2r+p

In the next place, by (4.2) and (4.3),

(P) - - x?
Z S‘ﬂ’rxn 2r = er-r(p) (x) = q);P) (x).
n=2r+p (1 - x)2r+l
Thus (5.3) becomes
r+1
1+ pz:———jL—————-¢£p)(x) =

I'=O(1 _ x)2r+1

1 +x -2 -R\P
2 °

Replacing z by (1 - x)2z, we get
. 1+x—(1—x)23—(1—x)HOP
1 +p( - x);g%¢§p)(x)zr+ = 5 > (®>0), (5.4)

where

R, = (1 - 2(1L +x)z - (1 - x)2z*)Y2, (5.5)

For p = 1, (5.4) reduces to
- L+ - (1 -a)’z- (1 - 2R,
r+l _
1+ @A - x)péo¢r(x)z = 5 . (5.6)

It is easily verified that (5.6) is in agreement with (3.3).
Returning to (5.1), we have

- » 27 _1{1 +x -z - RV
pIEERE @ - R( = ) :
so that
- . L[+ Q- )’z - (1 - 2)R\?P
;0@ D¢, @a" = 5= o ®20. (.7

Note that (5.7) holds for p > O.
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SECTION 6
As an immediate consequence of (5.4), we have
{1 + p(l - x)zq)ép) @)z 1 + g1 - x)Z(bé“ (x)z”l}
8§=0 t=0
=1+ @@+ - sc)ZdJip“”(x)z“l.
r=0
Comparison of coefficients of z"*! yields the convolution formula
o+ P @) = pdp @) + g7 (@)
- (6.1)
+pg(l - 2) Y 0@ %) @ (>0, qg>0).
8=0
Similarly, by (5.4) and (5.7),
(r+ DOF V@) = (»+ DL (@)
(6.2)
r-1
+p1 -2 Y- P @ ) @ (>0, g20).

s=0

In the next place, it is evident from (5.4) and (5.6) that

oo o P
1+ p(l - x)ch;p)(x)z“l ={1 + (1 - x)Zd)r(x)z”“} (p >0). (6.3)

r=0 r=0

For p =g =1, (6.1) reduces to

r-1
257 @ = 2, + -2 T, @0, , @.
8§=0

However, by (3.1), we have

r-1
o, @) = (1 -2, (@ +x ¢, @, ,_; @).

=0
It follows that

20 P (@) = (1 + 2)¢, (= = (1 - 2%, _ (x) (r>0). (6.4)

This formula can be generalized by means of the easily proved identity

()8 =GR H (RDCTET) - =GR e
Multiplying both sides of (6.5) by 2™ and summing over m, we get
200 + DFFT@ = e+ DA+ P @) - @+ p)a’f ) @)
and therefore
2z + Dap, P () = (2 + DA+ 00 @) - (r+p) 1 - ) F)(x). (6.6)
For example, for p = 2, we get
G+ Dz (@) = 2+ DA+ 2%, @ - @r+3)A +2)0 - 2%, , @
+ (r+ 2 - ), @ (> 1). (6.7)
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Repeated application of (6.6) leads to a result of the form

p
Q2)PPPD (x) = 2: (-Dc(p,r, )(1 + )P7°(1 - &)*y,__ (@) (r>0). (6.8)

s=0
where

P @) = 2+ DD @, v (@) = (2 + 1)1 (x)

and the coefficients c¢(p, r, s) are independent of x.
SECTION 7

We shall now state the binomial identities implied by (6.1) and (6.2). 1In
terms of f;p)(x), (6.1) and (6.2) become

P + Q)fl,,(p+Q)(x) = prf'(P)(x) + gz c-(Q)(x)

(7.1)
r-1
+ g Y P @ @ @ >0,q>0)
and =0
(r+ DFP*D@) = (» + DFD @)
(7.2)

r-1 .
+pY - @LD @ @>0,q20),

s=0

respectively. Using (4.2) and equating coefficients of x”, we obtain the fol-
lowing identities.

() (»
@ + q)8, (p+q) - psn—q,r + qsn_)p’r
n-2r-1 (7.3)
(P) q)
+PQEEJ,S nej-2,p-s -1 (p >0, g >0)
and j=08=0
@+ 15 P = (» + 15D
Sk (P) o (D 7.4
+pzz(r—s)s SVLJ—er]_ (>0, g>0).
=0 s=0

In particular, since

(o)zﬂ—f'z
(r + 1)S (P)

it is evident that, for g = 0, (7.4) reduces to

e+ s = ("7 ip S E(J-S) 507 rnea > O

J=0 s=0

The special case, p = 1, was stated in the Introduction.
A second pair of identities is also implied by (6.1) and (6.2). Put

() _ (r +p)! r\fr-py___1 (r+p\fr-p
Tom = (r + 1)t(m + 1)p<?ﬂ>( m ) Tr o+ l(m + p)( m )' (7.5)

Then by (4.4) we have

9@ =3 rfBxm (p 2 0). (7.6)

m=Q
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Note that, by (4.4) and (4.5), (7.6) holds for all nonnegative p. Substituting
from (7.6) in (6.1) and (6.2) and evaluating coefficients of x™, we obtain the
following two identities.

(p+q p
@ + P = pr i)+ qr %) +qu ZT“” S

§=0 =0
- = (P (D o
_pqzz Ts—lmgl (» >0, g >0),
s=0 j=0
r-1 m
(r+ DT = (2 + 1)1’!,“7,”’ +p Y Y (- S)Ts(pJ)Tp(qs)-l m-g
s=0 j=0
i (7.8)
“PZ Z(P—S)T(p)f(qs)—lm J-1 > 0.

§=0 j=0

In particular, for g = 0, (7.8) reduces to

@+ 08 = (1) - Z( AR

8=0 g=0
8 (
- pz Z(J) Tr—ps)—l,m-j-l (» > 0).

We remark that (6.1) is implied by (6.2). To see this, multiply both sides
of (6.2) by g, interchange p and g, and then add corresponding sides of the two
equations. Similarly, it can be verified that (7.3) is implied by (7.4) and
(7.7) is implied by (7.8).
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A sequence of integers A={a, < a, <-*- < a, < n} is said to have property
P,(n) if no a; divides the product of » other a's. Property P(n) means that no
a; divides the product of the other a's. A sequence has property @(n) if the
products a;a; are all distinct.

Many decades ago I proved the following theorems [2]:

Let A have property Py (i.e., no a; divides any other). Then

max K = [n ; l].

The proof is easy.



