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SOME GENERALIZATIONS OF A BINOMIAL IDENTITY 

CONJECTURED BY HOGGATT 

L. CARLITZ 
Duke University, Durham NC 27706 

To tkz memosuj o^ VoAneA Hoggcutt 

1. INTRODUCTION 

In November 1979 Hoggatt sent me the following conjectured identity. Put 

^ . - F T T C ^ T " ' " 1 ) <»*2z.+ l;r>0). (1.1) 
Then 

5» + i,1.=5».1.+'E E^.^n-rf-i,,-*-! (">2r + l; r > 1). (1.2) 

I was able to send him a proof of (1.2) that made use of various properties of 
special functions. 

In this note we first sketch this proof. Next, using a different method, 
we obtain some generalizations of (1.2). In particular, if we put 

< , = TilC I T ~ r ' P) (n>2r + P;r> 0), (1.3) 

where p is a nonnegative integer, we show that 

(p + q^+rq)= PS»(-P>.,+ qS<Vp.r + pqj: l f O " U , - . - i ^ 
J = 0 8 = 0 

(p > 0 , q > 0 , r > 0) 
and 

n - 2 r - l 

(r + 1)5^;°= (r + l)S™r + p £ E <r " " ^ . . ^ - i - a . * - . - i (1.5) 
J = 0 S = 0 

(p > 0 , <7 >_ 0, r > 0 ) . 

We remark that (1.4) is implied by (1.5). 
The special case p = 1, q = 0, of (1.5) may be noted: 

<* + !>*.., • (n;r)2 +"f E (J'; I V i . , , , , d.6) 
\ / j = 0 s = 0 x ' 

For additional results,, see (7.7) and (7.8) below. 

RemcUtk: The close relationship between the identities of this paper and ultra-
spherical polynomials suggests that even more general identities can be found 
that are related to the general Jacobi polynomials. This is indeed the case; 
however, we leave this for another paper. 

SECTION 2 

Put 

w-TTT E C;T~rV= E *..,*-. (2.D 
n » 2 r + 1 n = 2r + l 
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It follows that 

fv(x) = ^ ^ <$>r(x), (2.2) 
(1 - x)2r + 1 

where §r(x) is a polynomial in x. To get an explicit formula for typ(x) 9 re-
write (2.2) in the form 

x2 r + H , W = (1 - x)2r + 1fP(x). 
Thus 

^^=FTT(i-^2r+i£(nD(n+r v 
n = o\ I \ I 

- FTT t*" ̂ ''-"T/ ')(" " i * T " 3 * " + ')• <2-3) 
Since the p roduc t 

Im - j + v\lm - j + r + 1\ 

is of degree 2v in j s it follows that the inner sum in (2.3) vanishes for 

777 _> 2V + 1 . 

Thus we need only consider m <_ 2r. Hence the sum is equal to 

/ , w , , i\ m (™2P - 1 ) . (~m) . ( -m - 1 ) . Im + r\lm + r + 1\ y * J J J_ 
\ v )\ v ) 4 * j ! (-m - v). (-m - v - 1)^ 9 

where 

(a) j = a (a + 1) . . . (a + j - 1 ) . 

Applying Saalschutz? theorem [1, p. 8 7 ] , we get 

+ v + 1\ ( " P + 1 } - (~m + P + ^ •777 + r\lm + r + 1 \ _ _ _ _ _ ^ _ _ _ =
 p + l I T\(v " 1 \ 

( r ) \ r ) (-m - r ) m ( r + 2)m m + l \ w / \ m / " 
o r e , 

-<*>-sdh^XV)*- (ril)- (2-A) 
We haves therefore, 

For p = 0, it is clear that 

(fro to) = 1. (2.5) 

In hypergeometric notation, (2.4) becomes 

cj^to) = 2 V - p + x» "p5 i; * ] • (2.6) 
On the other hand [1, p. 254, Eq. (2)], 

(2)n fe + l\n „ f . „ X - I 
-n - 1; 2; "."•"w-^H^W- ff + 1. 

If we put 
- x " ^ - 1 + .V 
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this becomes 

2Fl{-n, -n - 1; 2; i , ] - ^ 1 - *>»P». " ( f t * ) . 

Thus, by (2.6), 

• , + 1 W F T T < 1 - ^ ( I , 1 , ( T 4 7 ) - < 2 - 7 > 
We have also the generating function [1, p. 271, Eq. (6)] 

_ > „ ( 1 , 1 ) ( x ) t " = 2 2 p" 1 ( l + * + p K ^ l - t + p ) " 1 , 
n = 0 

where 
p = (1 - 2xt + t 2 ) 1 / 2 . 

Thus 
(1 + t + p ) ( l - £ + p) = 2(1 - art + p ) , 

so tha t 
f > ( l l , 1 ) O H " = 2p"1(l - art + p ) " 1 . (2.8) 
rc = 0 

It can be verified that if 
<£> = 

) 

1 - xt 
t 

x2 -

+ 

1 

p 
3 

then 
__ 
dt p(l - art + p) * 

Comparison with (2.8) gives 

£ JTTT1'-1,1)<ar>*"+1 ^ - T ^ T 1 " ? ~P- (2.9) 

Now replace x by (I + x) / (I - x) and replace t by (1 - rc)^. The result is 

V 1
 (1 _. ̂ p ( i , i)/l + x\n _ 1 - (1 + x)z - A - 2(1 + x)z + (1 - ar)2g2^ 

n = o n + 1 n \1 - a?/ 2xz2 

Thus, by (2.7), we get 

1 - (1 + x)z - A - 2(1 + x)z + (1 - a?) 2„2 £ *r + 1(xU> = i ~ (1 +X)Z ~Vl ~ ^l +X)3+ U ~X) Z . (2.10) 
3? = 0 _£C3 

SECTION 3 

We now rewrite the identity (1.2) in terms of the polynomial <j> (x) . To be-
gin with, (1.2) can be replaced by 

_» - 1 n - 2 p - l 

&n + l , r = ^ntv + 2l_< .2L* ^j , k ^n - j - 1 , r - fe - 1 + Z-f^n-l, k^O.r-fe-i 
fc « 0 «7 - 1 & = 0 

& = 0 j = l 

Then multiplying both sides by xn+1 and summing over n we get 
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= 2r + l n = 2 p + l n = 2r 
V - 1 00 ^ 

E E s , , ^ £ 5B)r.k.ia:». 
fc=0 j = 2 k + l n = 2 r - 2 f e - l 

+ X2 

In view of (2.1), this becomes 

(1 - x)fr(x) = x2fr_x(x) +x2Y,fk(x)fT_k_1(x). 
Hence by (2.2) we get 

r-l 
<j>r(tf) = (1 - X)^r_1(x) + X^kteWr-k-lW (P ̂  1)e ^3o1) 

fe = 0 

For example, we have 

c()1(x) = 1, <J>2(a;) = 1 + xs <j>3(#) = 1 + 3x + x2, <$>h(x) = 1 + 6x + 6x2 + x3 

in agreement with (2.4). 
Next put 

F = F(x5 z) = £((>,,(*) 

then it is easily verified that (3.1) gives 

p = o 

F = 1 + (1 - x)sF + ̂ F 2 . (3.2) 

The solution of (3.2) such that F(xs 0) = 1 is 

p = 1 - (1 - x)z - A ~ 2(1 + x)z + (1 - x)2z2 

2xz 

£ <|> 1(a?)sr, 

Since 
F - 1 

we get 
£ $r + 1(x)3* = l _ r _ ( l + x ) a - / l - 2 ( 1 + * ) * + (1 -x)2*L. (3.3) 

p = o ZXZ 

Comparison of (3.3) with (2.10) evidently completes the proof of the desired 
result. 

SECTION h 

To generalize the above, we take 

« - F r r ( n ; T " r ' p ) ^ 
and 

4(P)(-) = t S<»x«. (4.2) 
n=2r+p 

where p is a fixed nonnegative integer. Clearly 

f^(x) = x2F + P c^-V), (4.3) 
(1 - a;)21""1 

where §^P)(x) is a polynomial x. It is evident that 
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and 

Exactly as in the proof of (2.4) we find that 

cw-&^fzfTirfD7(:)(';')*- <̂ "» '«•« 

In hypergeometric notation, both (4.4) and (4.5) become 

• , ( P ) ( J : ) = ( p r + + l ) ! p ! ff[~2' + P' ~r' P + 1; * ] • (*-6) 
( P) 

> t h a t (j)r (#) i s of degree r - p fo r p <_ r and of degree r fo r p > r . 
Since [ 1 , p . 254, Eq. (2 ) ] 

•K,^--i^457«--)^"-"(Hf)- <*•" 
SECTION 5 

(p) 
We shall now obtain a generating function for 5n r in the following way. 

We have 

it follows that 

r = 0 m - 2 r n = 2r + p \ / \ / r = 0 ( 1 

a . 2 r y 2 r + P a P 

a : ) " ' - ^ ! -y)-"1 

= y P ( ( l - a : ) ( l - y) - x2y2zV1 

= z / p ( l + xy - x2yzz - {x + z / ) ) " 1 . 
Rep lac ing x by ax/"1 , we have 

j y £ £ f ^ r)(W ~ I ~ p)x«y»-» = yP(l + x - x2z - {xy'1 + y))"1 

fc=o (1 + x - x2s)* 

= (i + .• - ^s)
 1 E i ^ ) 2 ,+fc-

j,fe = o (1 + # - ars) 

Since we want only the terms on the right that are free of y9 we take j=k±p. 
Thus 

x > i r ; r)(n -1 - py - a + - - *a-)-p-1 E ( 2 \ + p ) — 
r = 0 n = 2r+p\ / \ / fc = o ^ • ' ( 1 + 
Since [ 1 , p . 70, Ex. 10] 

• p \ 

• > ( . + 

i 2 

U + a -

^ + P 

# - x2z)lk 

Y 
• 4 s ) 1 / 2 ( ' 
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it follows easily that 

£ « ' £ <r+l)ffU"-2* -U1+* I *-*)*• (P>0), (5.1) 
where 

R = i?(a:, s) = ((1 - x1 - 2(1 + x)z + s2) 1 / 2. (5.2) 

Since 
dR _ g - 1 - X 
Bs i? 

it is easily verified that 

3 /l + a? - z - RV p(l + x - z - R\P 
dz\ 2 ) R\ 2 ) * 

Hence (5.1) yields 

In the next place, by (4.2) and (4.3), 

« 2r + p 

Thus (5.3) becomes 
««2r+p (1 - x)2r+1 

ill 1 

~0 (1 - #) 

Replac ing 2 by (1 - x)2z9 we ge t 

i , V^ % A < P ) , N / l + 

(I + X - (1 - X)2Z - (1 - ^)i? \ p 

1 + p ( l - a ) ] [> p
( P > ( X ) ^ + 1 = I ^ ) (P > °) • ( 5 ' 4 > 

where 

i?0 = (1 - 2(1 + x)z - (1 - x)2s2)1/2. (5.5) 

For p = 1, (5.4) reduces to 

1 + x - (1 - a;)22 - (1 - x)RQ 

1 + ^ - ^EM*)*1^1 = ^ • (5-6) 

v = 0 
It is easily verified that (5.6) is in agreement with (3.3). 

Returning to (5.1), we have 

r=0 (1 - x) x ' 
tiat 
- / I + x - (1 - x ) 2 s - (1 - a»i?oy> 
£ (r +. l )^/ ' (x)sr = ±-y Tx J ( p > 0 ) . (5.7) 

so that 

r = 0 

Note t h a t (5 .7 ) ho lds fo r p >. 0 . 
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SECTION 6 

As an immediate consequence of ( 5 . 4 ) , we have 

jl + p(l -*) |>iP ) (*)3
s + 1Ul + q(l - x)f^^t"^x)zi + 1\ 

= 1 + (p +q){l - x ) £ < ^ p + ? ) ( * ) 3
r + 1 . 

r = 0 

Comparison of coefficients of zr+1 yields the convolution formula 

(p + q)$(/+q)(x) = p<^p)(a) + q$?\x) 

+ P^1 - X^^sP)(X^r-s-l^ (P > 0, ? > 0). 
8 = 0 

Similarly, by (5.4) and (5.7), 

O + l)^(
r
P + q)(x) = (r + l ) ^ ^ ) 

(6.2) 
v - 1 

+ P(1 " a?) L ( P " s)*iP )Wi(-V-iW (p > 0, <? >. 0). 
s = 0 

In the next place, it is evident from (5.4) and (5.6) that 

,<„, 
r = 0 I, r = 0 

For p = q = I, (6.1) reduces to 

1 + p ( l - x ) £ ( J > ; p ) C r ) S
r + 1 - ^ 1 + (1 - x ) ^ < t . r ( a ; ) s r + 1 V (p > 0) . (6 .3 ) 

24>l2) (x) = 24>r(x) + (1 - x)Y,$BteMr-a-1<.x). 
s = 0 

However, by ( 3 . 1 ) , we have 

r-l 
<t>P(x) = (1 - •x)$r_1(x) + x^^s(x)(^r_s_1(x) . 

s = 0 
It follows that 

2x^2)(x) = (1 + x)<frp(x) - (1 - a ? ) 2 ^ ^ ) (P > 0). (6.4) 

This formula can be generalized by means of the easily proved identity 

o r r 1 ) -(x;")*(";')(••?•') -^ l iX" ;? ; 1 ) - «•» 
Multiplying both sides of (6.5) by 3Jm and summing over m9 we get 

2(r + l)fr(p + 1)(x) = (r + 1)(1 + ar)/,(p)(a;) - (r + p)x2fp
lp^x) 

and therefore 

2(r + 1)̂ ())2J(P + 1)(^) = (p + 1)(1 + x)c^p)Gr) - (r + p)(l - tf)2^^*). (6.6) 

For example, for p = 2, we get 

4(P + l)x2(p(
r
3) (x) = (r + 1)(1 + x)2(f)r(x) - (2r + 3) (1 + a?) (1 - a O 2 * ^ (*) 

+ (r + 2)(1 - a O ^ ^ G z ) (r > 1). (6.7) 



1981] SOME GENERALIZATIONS OF A BINOMIAL IDENTITY 
CONJECTURED BY HOGGATT 207 

Repeated application of (6,6) leads to a result of the form 

v 
(2x)pi|// + 1) (x) = Y, (-1)S^(P,P5 e)(l + x)p-s(l - x)2sipr_s(x) (p > 0). (6.8) 
. s = 0 

where 
4>(p)(x) = (r + l)l<S>iP)(x), ipr(x) = (r + 1> !*,<«> 

and the coefficients c(p9v5 s) are independent of x. 

SECTION 7 

We shall now state the binomial identities implied by (6.1) and (6.2). In 
terms of f^{x)3 (6.1) and (6.2) become 

(P + q)fr
(P + q)(x) = pxqfr

(p)(x) + qx%<q>(x) 
(7.1) 

V- 1 
+ Wx2Hfs(P)^fr-s-i&) (p > 05 q > 0) 

s = 0 

(r + l)fp(p + q)fe) = (r + l)f«Hx) 
v- 1 

+ ? Z ( p " s)/a(P>^>^iV-i^> (p > 05 q >: 0)5 
s = 0 

respectively. Using (4.2) and equating coefficients of xn
s we obtain the fol-

lowing identities. 

<p+q)Sn%+V =PS^q>r+qS^Pir 
x ( 7 .3 ) 

^ " f l C C , - . - ! (P>0, ,>0) 
and •'' = o e = 0 

( r + l ) 5 ( p + , ) = ( r + 1)S( < 7 ) 

2 p - i ( 7 - 4 ) 

+ P E X > " ^ .W-j -z . , - . - ! (P > 0, ? > 0). 
In particulars since 

r + »s™ =(n;r)\ ( 

it is evident that, for q = 09 (7.4) reduces to 

<* - ! < ? = ( n ; T + p"f E f ; S ) 2 ^- , P . S - 1 (p > o)-
J = 0 S = 0 

The special case, p = 1, was stated in the Introduction. 
A second pair of identities is also implied by (6.1) and (6.2). Put 

T (P) 

Then by (4.4) we have 

JJL±P)±__(r \(r ~ p\ 1 (r + p\(r - p\ ,- ,, 
+ 1)1 (m + 1)P \m ) \ m ) r + l\m + p)\ m )° y/ J 

/??= 0 
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Note that, by (4.4) and (4.5), (7.6) holds for all normegative p. Substituting 
from (7.6) in (6.1) and (6.2)'and evaluating coefficients of xm, we obtain the 
following two identities. 

(P + <7<P;?) = pT™ + qT«l + pq £ Z^^-V-i. m-J 
s=0 j=0 

r - l m-l 

~ P<?£ E ^ V - V - i , „-,•-! (P > 0, q > 0), 
s = 0 j = 0 

r - 1 • m 

( r + 1)Tiw> . ( r + 1 ) r w + p ^ ^ ( r _ s)T^T«i_i>m_. 
s = 0 j = 0 

r - 1 m - l 

- p V Y (r - s)T}p)Tiq)
 1 . n (p > 0). 

In particular, for q = 0, (7.8) reduces to 
r-1 m 

(7.7) 

(7.8) 

r-l m-l 

Z-^ L-d\n) r - s - l , m - j - l 
s=0 J= 0 ^ / 

r-l m-l 

P E Emc.' - i . , , - ,^ (p>°>-
J = 

We remark that (6.1) is implied by (6.2). To see this, multiply both sides 
of (6.2) by q9 interchange p and q, and then add corresponding sides of the two 
equations. Similarly, it can be verified that (7.3) is implied by (7.4) and 
(7.7) is implied by (7.8). 
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Vzdiccutzd to tkd mmotiy o^ my fi/uLmd VoAn HoggcUt 

A sequence of integers A = {a1 < a2 < • • • < ak <^ n] is said to have property 
Pr (n) if no a^ divides the product of v other a's. Property P(ji) means that no 
at divides the product of the other aTs. A sequence has property Q(n) if the 
products a^aj are all distinct. 

Many decades ago I proved the following theorems [2]: 

Let A have property P1 (i.e., no a^ divides any other). Then 

7 \ n + ll 
max K = — y — • 

The proof is easy. 


