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The Jefferson method is much simpler to use and would have achieved more or 
less the same overall result. At least one state recognizes the Jefferson 
method in its presidential primary act. 
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1. INTRODUCTION 

In Horadam, Loh, and Shannon [5], a generalized Fibonacci-type sequence 
{An(x)} was defined by 

AQ(x) = 0, A±(x) = 1, A2(x) = 1, A3(x) = x + 1, and 

An(x) = xAn_2(x) - An_h{x) (n>4). 

The notion of a proper divisor was there extended as follows: 

Vo.{iAjnJJU.Ovi: For any sequence {Un}, n _> 1, where Un £. 7L or Un(x) e Z (x) , the 
pvopev divisov wn is the quantity implicitly defined, for n >_ 1, by w1 = U± and 
wn = max{di d\Un9 g.c.d. (d, wm) = 1 for every m < n}. 

It was then shown that 

(1.2) An(x) = 11 wd(x) 
d\n 

and 

(1.3) wn{x) = I! (Ad{x))vln/d) 

d\n 
where ]i(n/d) are Mobius functions. 

( i . i ) 
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Elsewhere [8], Shannon, Horadam, and Loh have proved (with n replaced by 
In) that 

(1.4) Ahntx) = nff (~iy'(2n - / - V*- 2 ' - 1 . 
j-o x J ' 

The background to this paper is that the authors were shown (Wilson [9]s 
[10]) several numerical results relating to the sets of numbers in Table 2, and 
asked to establish a theoretical basis for these results. In the process, some 
useful further properties of (1.4) were developed. 

A particular aim of this investigation is to use the generalized Fibonacci-
type sequence to show that any integer n> 0 can be expressed as the product of 
(mostly) irrational numbers in an infinite number of ways according to a speci-
fic pattern. 

Besides expressing our appreciation of the stimulation provided by Wilson 
([9], [10]), we wish to register our thanks to A. Hartman and R. B. Eggleton [4] 
for their valuable comments, and to Professor G. E. Andrews, University of Penn-
sylvania, for the Hancock reference [3]. 

2. FACTORS, PROPER DIVISORS, AND TRIGONOMETRY 

From (1.4) we observe that 

(2.1) d e § \ — j = 2n - 2 

so that . , N 
(2-2) ~~x =°  
has n - 1 squares of roots 

2 2 2 

ax, a2, ..., an_1„ 

For notational convenience write 
(2.3) gi = a2. i = 1, 2, ..., n - 1. 

Since the constant term in (2.2) is (-l)n_1n, we have, from the theory of 
equations, that 

n-l 
(2.4) n = n Bi 

i = I 

and also, with J = 1 in the left-hand side of (2.2) that 

n- 1 
(2.5) In - 2 = £ 3,. 

t = l 

Thus, to find the factors of any integer n, we seek the n - 1 $•£ of (2.2), 
which by (1.2) can be obtained from the proper divisors of Ahn(x)/x. The first 
few of the Ahn(x)/x are listed in Table 1 along with their factors and proper 
divisors. 

For example, from Table 1, [5], and (1.2), A2o(x) has as its factors 

w2Q(x) = x1* - 5x2 + 5, w1Q(x) = x2 - x - 1, w5(x) = x2 + x - 1, 

wh(x) = 1, w2(x) = 1, and w±(x) = 1 

divisors, the ( 

deg. Wn(x) = h$(ri) 

trivially. 
In the search for proper divisors, the (provable) result 
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TABLE 1. Factors and Proper Divisors of Ahn (x)/x for n = 2, 3, -.., 12 

n 

2 

3 

4 
5 

6 

7 

8 

9 

10 

11 

12 

Ahn (x)/x 

x2 - 2 

xh - kx2 + 3 

xs - 6a:4 + 10a;2 - 4 

x8 - Sx6 + 21a;4 - 20a;2 + 5 

x 1 0 - 10a;8 + 36a;6 - 56a:4 + 35a;2 - 6 

a;12 - 12a;1 ° + 55a:8 - 70a:6 + 126a;4 

- 56a?2 + 7 

a:14 - 14a;12 + 78a;10 - 220a;8 

+ 330a;6 - 252a;4 + 84a;2 - 8 

x16 - 16a;14 + 105a;12 - 364a;10 

+ 715a;8 - 792a?6 + 462a;4 

- 120a;2 + 9 

x18 - 18a;16 + 136a;14 - 560a;12 

+ 1365a;10 - 2002a;8 + 1716a;6 

- 792a;4 + 165a;2 - 10 

a;20 - 20a;18 + 171a;16 - 816a;14 

+ 2380a;12 - 4368a;10 + 5005a;8 

- 3432a;6 + 1287a;4 - 220a;2 + 11 

x22 - 22a;20 + 210a;18 - 1140a;16 

+ 3876a;14 - 8568a;12 

.+ 12376a;10 - 11440a;8 + 6435a;6 

- 2002a;4 + 286a;2 - 12 

whn (x) 

x2 - 2 

x2 - 3 

a;4 - 4a;2 + 2 

a;4 - 5a;2 + 5 

a;4 - 4a;2 + 1 

x6 - 7a;4 + 14a;2 - 7 

x8 - 8a;6 + 20a;4 

- 16a;2 + 2 

x6 - 6a;4 + 9x2 - 3 

x8 - 8x6 + 19a;4 

- 12a;2 + 1 

x10 - lix8 + 44a;6 

- 77a;4 + 55a;2 

- 11 

x8 - 8a;6 + 20a;4 

- 16a;2 + 1 

Other f a c t o r ( s ) 

Ah (x)/x 

A6(x) 

AQ (x)/x 

A i o (JK) 

wQ (X) 9 A12 (x)/x 

Alh(x) 

1 6 \"^J l*E 

w12(x) • A1Q(x) 

wQ(x) • A20 (x)/x 

A22\%) 

w16(x)°A2h(x)/x 
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TABLE 2. List of Factors for n = 2, 3, .. 
from Wilson [9] 

14 (9 decimal places) 

2. a 2.000000000 

3. a 3.000000000 
b 1.000000000 

4. a 3.414213562 
b 2.000000000 
c 0.585786437 

5. a 3.618033989 
b 2.618033989 
c 1.381966010 
d 0.381966010 

6. a 3.732050807 
b 3.000000000 
c 2.000000000 
d 1.000000000 
e 0.267949192 

7. a 3.801937736 
b 3.246979612 
c 2.445041864 
d 1.554958135 
e 0.753020387 
f 0.198062263 

8. a 3.847759064 
b 3.414213562 
c 2.765366862 
d 2.000000000 
e 1.234633137 
f 0.585786437 
g 0.152240935 

10. 

11. 

12. 

a 3.879385241 
b 3.532088884 
c 3.000000000 
d 2.347296348 
e 1.652703651 
f 1.000000000 
g 0.467911115 
h 0.120614758 
a 
b 
c 
d 
e 
f 
8 
h 
i 

a 
b 
c 
d 
e 
f 
g 
h 
i 
J 
a 
b 
c 
d 
e 

3, 
3, 
3, 
2. 
2. 
1. 
0, 
0, 
0, 

3. 
3, 
3, 
2, 
2, 
1. 
1, 
0, 
0, 
0, 

3, 
3, 
3, 
3, 
2, 

.902113033 

.618033989 

.175570503 

.618033989 

.000000000 

.381966010 
,824429496 
.381966010 
.097886966 

.918985948 

.682507069 

.309721461 

.830830027 

.284629680 

.715370319 

.169169972 

.690278538 

.317492930 

.081014051 

.931851652 

.732050807 

.414213562 
,000000000 
.517638088 

f 2.000000000 
g 1.482361911 
h 1.000000000 
i 0.585786437 
j 0.267949192 
k 0.068148347 

13. a 3.941883635 
b 3.770912051 
c 3.497021494 
d 3.136129492 
e 2.709209771 
f 2.241073362 
g 1.758926637 
h 1.290790228 
i 0.863870507 
j 0.502978505 
k 0.229087948 
1 0.058116364 

14. a 3.949855824 
b 3.801937736 
c 3.563662962 
d 3.246979612 
e 2.867767476 
f 2.445041864 
g 2.000000000 
h 1.554958135 
i 1.132232523 
j 0.753020387 
k 0.436337037 
1 0.198062263 
m 0.050144175 
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where cj)(n) is Euler's (f)-function, is useful. E.g., deg. w20(x) = 4 = ^(20). 
From (1.2) and (2.3), 

n J> 2, since wh(x) = a; 
d|4n 

n-l 

(2.6) 

whence 

A (x) 
X = n wd(x) 

d\kn 

= n V - % ) 

Ah (x) 
= II Hz(0) n >. 2 

* = 0 d|4n 

(2.7) = (-l)*"1 n Bj f r o m (2-6) 
n- 1 

J = l 

= (-l)n_1n from (2.4), 

Consider, as an example, the case n = 5, i.e., 

A20(x) 
= h h • 

x = 0 j = 1 

from (2.7). Then the factors of 5 are given by the 3i of 

xh - 5x2 + 5 = (x2 - Js(5 + /5))(x2 - ̂ (5 - /5)) = ̂ 2Q(x) 

= (x2 - 3.618033989)(x2 - 1.381966010) 

= (x2 - 3X)(^2 - 33) 
and 

(x2 - x - 1)(x2 + x - 1) = xh - 3x2 + 1 = u10(x)w5(x) 

= (x2 - 3s(3 + /5))(x2 - %(3 - /5)) 

= (x2 - 2.618033989)(x2 - 0.381966010) 

(x2 - $,)(x2 - 3J, 
that is, 

M 1 H 2 H 3 H 4 

where the subscript labelling of the irrational 3*s has been chosen to corre-
spond to the decreasing order of magnitude given by Wilson [9], and where 
numerical calculations have been computed by pocket calculator to nine decimal 
places. 

Our 3^ have a simple trigonometrical expression. From [8] and (1.4), 

(2.8) A2n(2x) == £/„_!(#) n > 2, [/0 = 1 

where Un(x) is the Chebyshev polynomial of the second kind (Magnus, Oberhettin-
ger, and Soni [7]). That is5> 

A^ (2x) U0 ,(x) 
hnK ' 2n-l v J 

(2.9) = n > 1. 
x x — 

Solving 
(2.10) Un(cos 6) = S l n ( n +

Q
1 ) 6 = 0 

for 0 gives 
sin 0 

^ y <fc = 0 , 1 , 2, . . . , n), 
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Therefore, the n - 1 3^ of (2.2) are simply 

(2.11) 3; = 4 c o s 2 g (i = 1, 2, ..., n - 1). 

Of course, (2.4) with the 3̂  given by (2.11), is a known result (see, e.g., 
Durell and Robson [1]). 

In the example following (2.7), where n = 5, we have 

n / 2 TT 0 ' , 2 TT D . 2 3TT D , 2 2lT 
3X = 4 cos yjj, 32 = 4 cos j 9 33 = 4 cosz -j^-, 34 = 4 cos' -y. 

Wilson?s a, &, c, ... in Table 2 are 31, 329 33s ... • 
Clearly, from (2.11), 

(2.12) 3; + 3n-i = 4. 

Polynomials i42n_1(ic) satisfy the identity previously established in [5], 
namely, 

(2.13) A2n+1(x) = A2n+2(x) + A2n(x)9 

so the polynomials An(x) for n odd are the sum of two consecutive Chebyshev 
polynomials. 

Moreover, 

(2.14) A2n + l ^ = £.<*> 
in the notation of Hancock [3], about which further comments will be made later. 

3. GENERATION OF IRRATIONAL FACTORS OF INTEGERS 

One of our main results is Theorem 1 (below) relating to the system of 
equations satisfied by the 3^ (= ot|) . 

Lomma 1 '• 
-2 

j-o 
(3 . 
in 

(3 . 

• 1) 
which 

.2) 
1 if 2|n, 

6(2, n) 
10 if 2Jn. 

P/LOOJ: Equat ion (1 .72) of Gould [2] s t a t e s t h a t 

i(-Dk(n-k
k)2 

i> = n \ ' 

* " ^\on-2/c = n + K 

k = 0 

Algebraic manipulation of this equation yields 

n- 1 
= V (-1)0 (2n ~ i ~ 1]22n-2^1 

E(-DJ'(2n"/" Vn-2'-2 

2n 
j-o 

n-1 

J-O 

{-l)n-Ln + " - i^ , _u y^ (-i)<7'(2n " / " 1 > J2 2 n " 2 t 7 ' " 2
3 

that is, 
j-o 

2 
2n - j - l\ j2n- 2j-2 n+ (-1)»« = £ (-lW2n "J " X)2 
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whence 
n-l 

n (2, ») -.E'- 1)^ 2""/' 1) 2 

since n + (-l)nn = 2nS(2, n). 

A, (x) 
Tke.OH.QJfn 1: The n - 1 a2 of = 0 satisfy the system of equations 

x 
„ 2 ™ 2 

(3.3) 

cq - a:; + ••• + (-1) a^„x = 2 

aj - a* + ••• + (-1) ah
n_x = 23 

a2n"2 - a2n~2 + ••• + (-l)na^"2 = 22n"3. 

2 ?H£o£: T o solve (2.2), consider the n - 1 a| (i = 1, 2, .. . , n - 1). Then 

0 = E (~D'~%,K)/a; 
i = l 

= "E E V l ) * ^ - 1 ^ " " / " V 2 "" 2 ^ 2 from (1.4) 

= i f iV l )*^- 1 ^* " ' "" L)af "2^ + 1> 

= E E V D ^ - 1 ^ 7 " > r 2 ( i + 1 ) + E(-Di + n-2L ! > ? 

- 1 <-i>'(2n "/ " M E V 1 ) * " 1 ^ ' 2 ^ ^ - ^<2> w> by <3-2> 

- • i f (-1)J(2W " '' ' M l ^ - D * - 1 ^ - 2 ^ + 1) - E 2 (-D J ' ( 2 n " ? " l ) 2 ^-2j-3 
by Lemma 1 

from which it follows that, x̂ ith a slight variation in the set of values of j, 

EVl)1-1^"-2' = 22*-2'--1 g = 1, 2, .... „ - 1, 
t = l 

which is the system of equations (3.3). 

Itliut/tcution oj ThdOfim 1: Theorem 1 t e l l s us t h a t t h e r e a r e 2 3^ of 

A12(x) 

which satisfy (3.3) when n = 3, i.e., $i - 32
 = 25 3X - 32

 = 23
3 namely, 

^ J 2
 = 1 = ̂  cos 3"-(3.4) 3X = 3 = 4 cos2 £, 32 = 1 = 4 cos2 ̂ . 

42 1 t (a0 
A l s o , t h e r e a r e 5 3^ of = 0 which s a t i s f y (3 .3 ) when n - 6 , i . e . , 

E ( - l ) * - 1 ^ - 22'"1 3 = 1. 2 ' •••' 5 ' 
i = l 
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namely, 

( B = 3.732050807 = 2 + /J = 4 cos2 -—-, 39 = 3.QQ0000QQQ, 
(3.5) \ lZ 

(g3 = 2.000000000, 34 = 1.000000000, 35 = 0.267949192 = 2 - / 3 , 

as can be seen in the entry for n = 6 in Table 2. 

i436Gc) 
Similarly, there are 8 <^i of = 0 which satisfy (3.3) when n = 9, 

^ ( - D ' - ' e / - 22*"1 j = 1, 2, 

namely, 

\ = 3.8793385241 = 4 cos2 ~^3 32 = 3.532088884, 33 = 3.000000000, 

(3.6) { 34 = 2.347296348, 35 = 1.652703651, 36 = 1.000000000, 

37 = 0.467911115, 38 = 0.120614758, 

as can be seen in the entry for n = 9 in Table 2. 
From (3.4), (3.5), and (3.6), we observe that 

3 = 3X32 n = 3 

- B1B2B„e5- n = 6 

= 3,3,3,353,33 n = 9 
(and so on). Notice that every (B̂ ? for which 3|i, does not occur in the prod-
ucts. This is the gist of (3.9). (Other combinations are possible, e.g., 

3 2 3 , 

Me 
Ws 

n = 6 
n = 9 

n = 12 
and so on.) 

Elementary trigonometry with (2.6) and (2.11) may be used to show that 

(3.7) Ahn{x)/x + (~l)n{̂ n((4 - x2y))/x = 0 

where, by the second term in (3.7) is meant the expression for Ahn{x)/x when x2 

is replaced by 4 - x2. 
If (3.7) is treated from a combinatorial number theory point of view, we 

have, on using (1.4) and the binomial expansion for (4 - x 2 ) n _ 1 " J and then con-
sidering the coefficient of x2n~2~2p

3 the result 

0.8) | > i ) ^ < p - ; > (2" " / "') (» - 1 - *) - (2« " / - P) 

for every p <_ n ~ 1. 
This identity is very similar to result (3.44) in Gould [2]. 
The next (known) result is important for Table 2i 

n-l 
(3.9) II 3- = r r\n9 BJ. + 1 < g. (j = 1, . .., n - 2). 

£ = 1 

k - l fc-1 
To prove (3.9), divide (2.4) by 0 3 W = l\ &*. = k where B* = 4 cos2 ~ and 

% = 1 ^ = 1 
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n = rks i.e., r\n, i.e., v\ln. E.g., n = 8 in Table 2 gives 

7 
2 = FI &i = 3i333537 with 2 = 3236 = 34. 

i = i 
2{i 

Refer also to the Illustration of Theorem 1 on page 244 above. 
From (3.9), and, earlier, (3.4), (3.5), and (3.6), it is clear that the se-

quence (1.1) shows how any integer (>0) may be expressed as a product of (most-
ly) irrational numbers in an infinite number of ways, in accordance with a pat-
tern of generation. 

4. MISCELLANEOUS RESULTS 

Results (4.1)-(4.5), which are stated without proof, may be derived from 
/ (1.2) and (2.11) 

(4.1) 
A (x) \ A2n^ ' Bhn^ " n o d d 

hn 

An (x) 
In v J 

Bu„ (*) hn 

where Bhn(x) = Whn (x) x (some product of proper divisors depending on the fac-
tors of ri) . 

Some particular instances of (4.1) are shown in Table 1. 
Consider again the transformation x2 ->• 4 - x2. This has the following ef-

in reverse order (and conversely), so 

f ec t s : 
n odd 
(4 .2 ) 

(4 .3 ) 

n dv&n 

(4.4) 

A2n(x) —Bhn(x) 

A (x) A (x) 
in v J inx ' 

X X 

(4.5) Bhn{x) ++ Bhn{x). 

_ Previously, in (2.14), we mentioned the connection between our ̂ 2n+i(x) and 
fn(x) in Hancock [3]. It is instructive to compare in detail our treatment, 
where the motivation originated from combinatorial and number theoretic consid-
erations, with Hancock's approach to somewhat similar material through cyclo-
tomy and trigonometry. 

However, to conserve space, we merely indicate without justification some 
comparisons of interest as well as some fresh properties of An{x). Familiarity 
with Hancock's notation is assumed. 

Observe, firstly that our 

A0 (x)9 A, _,0(x), B,,n ^.(x)9 and xB,,n Ax) + 2 
lnx / 9 4n + 2 v / s 4(2n + l) v / 5 h(ln + l) 

a r e , r e s p e c t i v e ^ , Hancock 's 
An-iW> * 2 n ^ > » $ 2 n ^ ) > a n d ^ + 1 ^ ' 

F u r t h e r , we n o t e t h a t 
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n + 2(x) -A2n(x) = fn(x) = (-lffn(-x) 

(A.6) <; A2n(x) = k{fn_xtx) +fn_1(x)) 
n 

E t (x) = An fx) - 1 
k = 1 

while some fresh results are 

(4.7) { A2n(2) = n 

A2n+1(2) =n+ 1. 

5. CONCLUDING COMMENTS 

Newtonfs iteration can be used to solve the system of equations (3«3). Al-
ternatively 9 the problem may be approached through the theory of recurring se-
quences. 

Using the notation of Jarden [6], we may consider equation (2.2), with x 
replaced by vy9 as the auxiliary equation of the homogeneous linear recurrence 
relation of order n - 1: 

where 

(5.2) w^-u = n £ 1
( - i ) i - i e -

is the general term of the recurring sequence {w)^ 1-) } defined by (5.1) with 
the initial conditions (3.3). Thus, when n - 3, (2.2) becomes 

xh - kx1 + 3 = 0 
which can be rewritten as 

y2 - ty + 3 = 0 
i.e., the auxiliary equation for (5.1) in the form 

WW = 4w(2) _ 3u(2) 
m m-l m-2 

Initial conditions are 

Wl2) = &1 " ^ 2 = 2 

and 
WW = g2 _ 32 . 23. 

Finally, it is worth noting that the theoretical foundations for the ideas 
implicit in [9] and [10] have by no means been fully exploited. 
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A HISTORY OF THE FIBONACCI Q-MATRIX 
AND A HIGHER-DIMENSIONAL PROBLEM 

H. W. GOULD 
West Virginia University, Morgantown, WV 26506 

To tko, momotuj o{ V&sin&i E. Hoggatt, IK. 

One of the most popular and recurrent recent methods for the study of the 
Fibonacci sequence is to define the so-called Fibonacci ^-matrix 

(1) 

so that 

(2) Qn n+l 

where Fn + 1 - Fn + Fn_l9 with F1 = 1, F0 = 0 . 
Theorems may then be cited from linear algebra so as to give speedy proofs 

of Fibonacci formulas. Write \ A \ for the determinant of a matrix A. Then it 
is well known that \AB\ = \ A \ • |5|, and in general \An\ = \A\n . The Fibonacci 
^-matrix method then gives at once the famous formula 

(3) Fn+lFn-l ~ Fn = ("I)"' 
which was first given by Robert Simson in 1753. Formula (3) is the basis for 
the well-known geometrical paradox attributed to Lewis Carroll in which a unit 
of area mysteriously appears or disappears upon dissecting a suitable square 
and reassembling into a rectangle. 

Where did this ^-matrix method originate? The object of the present paper 
is to give a tentative answer to this question, and present a reasonably com-
plete bibliography of papers bearing on the use of such a matrix for the study 
of Fibonacci numbers. An unsolved problem is included. 

The phrase "^-matrix" seems to have originated in the master!s thesis of 
Charles King [10]. At least. Basin and Hoggatt [16] cite this source, and from 
then on the idea caught on like wildfire among Fibonacci enthusiasts. Numerous 
papers have appeared in our Fibonacci Quarterly authored by Hoggatt and/or his 
students and other collaborators where the ^-matrix method became a central 
tool in the analysis of Fibonacci properties. Vern Hoggatt carried on a far-
ranging correspondence in which he jotted down ideas and made innumerable sug-
gestions for further research. For example, his letters to me make up a foot-
high stack of paper very nearly, representing creative thinking going on for 20 


