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PROBLEMS PROPOSED IN THIS ISSUE 

H-330 Proposed by Verner E. Hoggatt, Jr., San Jose State Univ., San Jose CA 

If 0 is a positive irrational number and 1/6 + 1/83 = 1, 

An = [n9], Bn = [n03], Cn = [n02]5 

then prove or disprove: 

An + Bn + Cn - CBn . 

H-331 Proposed by Andreas N. Philippou, American Univ. of Beirut, Lebanon 

For each fixed integer k >_ 29 define the k-Fibonacci sequence {/„ Jn=o by 

f<k) = 0, f<" = 1, and 

U> _ [fn-l+ ••• +foW i f 2 < » < k, 

Letting a = [(1 + /5)/2], show: 

(a) /<*> > an'2 if n >_ 3; 
(b) {/(fe))n = 2 nas Schnirelmann density 0, 

H-332 Proposed by David Zeitlin, Minneapolis, MN 

Let a = (1 + /5)/2. Let [x] denote the greatest integer function. Show 
that after k iterations (k >_ 1) 9 we obtain the identity 

[a^ + 2 [ a ^ + 2[a^+2[.••]]]] = f(2p + 1K2fc + 1)^2p + 1. <P = 0, 1, . . . ) • 

Rem<Vik&: The special case p = 0 appears as line 1 in Theorem 2., p. 309S in the 
paper by Hoggatt and Bicknell-Johnson, The Fibonacci Quarterly 17(4):306-318. 
For k = 29 the above identity gives 

L U L U J J n 5(2p + l) /£ZP+1 <+(2p+l) 2(2p+l) 
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SOLUTIONS 

Con-Vergent 

H-308 Proposed by Paul S. Bruckman, Corcord, CA 
(Vol. 17, No. 4, Dec, 1979) 

Let 
p p (a . a . ... 9 a„) 

[an , a„, ..., an] = — = — 7 r-
1 2 nJ qn qn(al9 a2, ...9 an) 

denote the nth convergent of the infinite simple continued fraction 

[ax, a2, . . . ] , n = 1, 2, ... . 

Also, define pQ = 1, q = 0. Further, define 

(1) ^n,k = Pn(<V a2, ..., an)qfc(ax, a2, ..., ak) 

- p f e (a 1 5 a 2 , . . . , ak)qn(al9 a 2 , . . . , a n ) 

= p q, -p1q90<k<n. 

Find a g e n e r a l formula fo r Wntk. 

Solution by the proposer. 

R e c a l l t h a t t he p ' s and q n
f s s a t i s f y t h e b a s i c r e c u r s i o n 

(2) rn + 1 = an + 1rn + rn_19 n « 1, 2 

Also-, the following relations are either obvious or well known: 

(3) Wn9n = 0; 

(*) tf„,n-i = ( - 1 ) " ' n > ! ; 

(5) tfn,n.2 = (-Dn"1an, n > 2. 

[See Niven and Zuckerman* An Introduction to the Theory of Numbers9 3rd ed. 
(New York: Wiley, 1972), Theorem 7.5, for a proof of (4) and (5).] 

We show, by strong induction, that 

<6> "».k = <-1>k+1P„-k-l K + 2> fl* + 3' ••-. "»>• 
Let 5 denote the set of positive integers n such that (6) holds for 0 <_ k < n. 
Setting n = 1 in (4) yields W± 0 = -1 = (-l)0+1p0; hence, 1 e S. Suppose that 
for some integer m >_ 2, 1, 2, .. ., 772 e S. By (4) and (5), we have: 

(7) Wm+1,m = (-l)m+1 = (-l)m + 1p 0, and Wm + i,m-i = (-D\tl. °r 

Also, if 0 < fe£m - 2, 

W'm + l . k - P » + l < ? k - Pfc<?m + i • <am + lP„ + Pm-l><7k ~ P k ( a » + l<7m + ? » - l > 

= am+i(PB«?fc " P k ^ ) + P r a „ A " P , ^ . , = am + 1»m, k + < V 1 ( k 

[u s ing (1) and ( 2 ) ] . Hence, by t h e i n d u c t i v e h y p o t h e s i s and ( 2 ) , 
&m + l , f c =: C"1) am+lPw~-fe-l(a7< + 2 9 • • •» arc) + ( _ 1 ) Pm-fc-2(afe + 2» • • •» a m - l ) 

= ^ ^ V * ^ . ••-. «m + i)-r m - 7< 
Thus, u s i n g (7) and ( 8 ) , 
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<9> ^ + i. k " (-1)*+1P„-kK + 2 a m + 1 ) , 0 < f e < m , 

which is equivalent to the statement (jn + 1) e S. Hence9 

1, 2, . . . , w i £ 5 ^ ( m + 1 ) e 5 . 

By induction9 (6) is proved. 

Fibonacci and Lucas Are the Greatest Integers 

H-310 Proposed by Verner E. Hoggatt, Jr., San Jose State Univ., San Jose, CA 
(Vol. 17, No. 4, Dec, 1979) 

Let a = (1 + v/5)/29 [na] = an9 and [na2] = bn. Clearly an + n = bn. 

(a) Show that if n = F2m+1, then an = F2m + 2 and £n = F2m + 3. 

(b) Show that if n = F 2m, then an = F2m + 1 - 1 and bn = F2m + 2 - 1. 

(c) Show that if n = L2m , then an = L2m + i a n d ̂ n = L 2 m + 2 -
(d) Show that if n = £2 m + 1, then an = L2m + 2 - 1 and bn = L2m + 3 - 1. 

Solution by Paul S. Bruckman, Corcord, CA 

We begin by noting that 

F - OF = 4={an+1 - 3n+1 - a(an - 3n)} 
n + l n /5 

= 4=(an + 1 - 3n + 1 - an + 1 - 3n-x) 

= - 3 n / / 5 ( 3 - a ) , 
or 
(1) 3 n = ^ , - aF„ . 
v y M rc+1 n 

A l s o , aln - Ln+l = a ( a " + 3") - ( a " + 1 + 3 n + 1 ) = -PB(B - a ) , or 
(2) e V 5 = a £ „ - Ln+l. 

Since - 1 < 3 < 0 , t h u s 0 < 3 2 n £ 1 and - 1 < 3 2 n + 1 < 0 (n _> 0 ) . Hence, u s -
ing (1) 

0 < F2n+1 ~ aF2n ± 1 a n d ~l < F2n+2 " *F2n+l < °5 

note that equality is attained above if and only if n = 0. Therefore, 

F2n + 1 - l i « F 2 n < F2n + 1 and F2n + 2 < aF2n+1 < F 2n + 2 + 1 (n > 0). 

It follows that 

(3) [aF2n] -F2n+1 - 1, and 

(4) [oP2„ + i] =
 F2n + 2 <« >.0). 

Now (3) i m p l i e s [ a 2 F 2 „ ] = [ (1 + a ) F 2 „ ] = F'2n + [aF2n] = F2n + F2n + l~ 1, or 

(5) [ « 2 F 2 J - F 2 n + 2 - 1. 
A l s o , [a2F2n+1] - F 2 n + 1 + [aF2n+1] = F2n+1 + F2n+2, or 

(6) [a2^2n + J = F2n + 3-
Note that (4) and (6) are equivalent to (a) of the original problem; also, 

(3) and (5) are equivalent to (b) of the original problem. 
In order to prove (c) and (d) s we proceed similarly, using the result in 

(2). We need only observe that |3n/5*| < 1 for n >_2. The desired results then 
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follow, as before, for all values of n except for possibly n - 0; however, a 
quick inspection shows that the results also hold for n = 0, i.e., 
(7) [aL2n] = L2n + 1, [aL2n+1] = L2n+2 - 1, 

which imply the other two results. 

Commtnt by Bob Prielipp, University of Wisconsin-Oshkosh, WI 

Sharp-eyed readers will find that this problem can be solved easily by us-
ing the following four lemmas established in the article "Representations of 
Integers in Terms of Greatest Integer Functions and the Golden Section Ratio" 
by Hoggatt and Bicknell-Johnson [The Fibonacci Quarterly 17(4):306-318]. 

Lemma 1 (p. 308): [dFn] = F
n+1> n odd, n >_ 2; 

[aFn] = Fn + 1 - 1, w even, n >. 2. 

Lemma 2 (p. 308) : [a2Fn ] = Fn + 2, n odd, n >_ 2; 

[a2Fn] = Fn + 2 - 1, n even, n j> 2. 

Lemma 6 (p. 315) : [aLn] = Ln + 1 for n even, if n _> 2; 

[aLn] = £n + 1 - 1 for n odd, if n >_ 3. 

Lefflma 7 (p. 375) : [a2Ln] = Ln + 2 if n is even and n _> 2; 

[a2Ln] = £n + 2 - 1 if ft is odd and n _> 1. 

Also solved by Bob Prielipp, G, Wulczyn, and the proposers. 

CORRECTIONS 

1. The problem solved in Vol. 18, No. 2, April 1980 is H-284 not H-285. 

2. H-315 as it appeared in Vol. 18, No. 2, April 1980 had several misprints in 
it. A corrected version is given below. 

H-315 Proposed by D. P. Laurie, National Research Institute for Mathematical 
Sciences, Pretoria, South Africa 

Let the polynomial P be given by 

POO = zn + an_1zn~1 + an_2zn~2 + ... + a±z + aQ 

and let zls z2, ..., zn be distinct complex numbers. The following iteration 
scheme for factorizing P has been suggested by Kerner [1]: 

, u -
n 
Il(Zi ~ 3j) 

J - l 
*** 
then also 2_, ̂ i = 

i - 1 
Reference 

- J - J ^ - J 

" a n - l -Prove that if £_.zi - ™^n_1» 
J = I 

1. I. Kerner. "Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von 
Polynomen." Numer. Math. 8 (1966):290-94. 


