ORTHOGONAL LATIN SYSTEMS

JOSEPH ARKIN
197 Old Nyack Turnpike, Spring Valley, NY
E. G. STRAUS*
University of California, Los Angeles, CA 90024

Dedicated to the memory of our friend Vern E. Hoggatt

1. INTRODUCTION

A Latin square of order n can be interpreted as a multiplication table for a binary operation on n objects $0,1, \ldots, n-1$ with both a right and a left cancellation law. That is, if we denote the operation by *, then

$$
\begin{align*}
& a * b=a * c \Rightarrow b=c \\
& b * a=c * a \Rightarrow b=c . \tag{1.1}
\end{align*}
$$

In a completely analogous manner, a Latin k-cube of order n is a k-ary operation on n objects with a cancellation law in every position. That is, for the operation ($)_{*}$,
(1.2) $\left(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{k}\right)_{*}=\left(a_{1}, \ldots, a_{i-1}, c, a_{i+1}, \ldots, a_{k}\right)_{*}$ implies $b=c$ for all choices of $i=1,2, \ldots, k$ and all choices of

$$
\left\{a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{k}\right\} \subset\{0,1, \ldots, n-1\}
$$

We permit 1 -cubes which are just permutations of $\{0,1, \ldots, n-1\}$.
Two Latin squares are orthogonal if the simultaneous equations

$$
\begin{equation*}
x * y=a, \quad x \circ y=b \tag{1.3}
\end{equation*}
$$

have a unique solution x, y for every pair a, b. A set of Latin squares is orthogonal if every pair of squares in the set is orthogonal.

In an analogous manner, a k-tuple of Latin k-cubes is orthogonal if the simultaneous equations

$$
\begin{gather*}
\left(x_{1}, x_{2}, \ldots, x_{k}\right)_{1}=a_{1} \\
\left(x_{1}, x_{2}, \ldots, x_{k}\right)_{2}=a_{2} \tag{1.4}\\
\vdots \\
\left(x_{1}, x_{2}, \ldots, x_{k}\right)_{k}=a_{k}
\end{gather*}
$$

have a unique solution x_{1}, \ldots, x_{k} for all choices of $\alpha_{1}, \ldots, \alpha_{k}$.
A set of Latin k-cubes is orthogonal if every k-tuple of the set is orthogona1.

In earlier papers, [1] and [2], we showed that the existence of a pair of orthogonal Latin squares can be used for the construction of a quadruple of orthogonal Latin cubes (3-cubes) and for the construction of orthogonal k-tuples of Latin k-cubes for every $k \geq 3$. In this note, we examine in greater detail what sets of orthogonal Latin k-cubes can be constructed by composition from cubes of lower dimensions.

[^0]
11. COMPOSITION OF LATIN CUBES

Let $C=\left(a_{1}, \ldots, a_{s}\right)$ be a Latin s-cube and let $C_{i}=\left(b_{i 1}, b_{i 2}, \ldots, b_{i k_{i}}\right)_{i}$ be Latin k_{i}-cubes $i=1,2, \ldots, s$. Then

$$
C^{*}=\left(C_{1}, C_{2}, \ldots, C_{s}\right)
$$

is a Latin k-cube, where $k=k_{1}+k_{2}+\cdots+k_{s}$.
To see this we need only check that the cancellation law (1.2) holds. Now let all the entries be fixed except for the entry $b_{i j}$ in the j th place of C_{i}. Since C is a Latin cube it follows that, if the values of C^{*} are equal for two different entries of $b_{i j}$ then the values of C_{i} must be equal for those two entries. This contradicts the fact that C_{i} is a Latin cube.

This composition, while algebraically convenient, is not intuitive and we refer the reader to [1] where we explicitly constructed a quadruple of 3-cubes starting from a pair of orthogonal Latin squares of order 3. In the present notation, starting from $a * b$ and $a \circ b$ as orthogonal Latin squares, we constructed the quadruples

$$
(a * b) * c,(a * b) \circ c,(a \circ b) * c,(a \circ b) \circ c
$$

or, equivalently,

$$
a *(b * c), a *(b \circ c), a \circ(b * c), a \circ(b \circ c)
$$

as orthogonal quadruples of cubes.
Similarly, if ()$_{1}, \ldots .,()_{k}$ denote an orthogonal set of Latin k-cubes, then

$$
\left(a_{1}, \ldots, a_{k}\right)_{1} \circ a_{k+1},\left(a_{1}, \ldots, a_{k}\right)_{2} \circ a_{k+1}, \ldots,\left(a_{1}, \ldots, a_{k}\right)_{k} \circ a_{k+1}
$$

$$
\left(a_{1}, \ldots, a_{k}\right)_{i} * a_{k+1}
$$

is an orthogonal $(k+1)$-tuple of Latin $(k+1)$-cubes for any $i \varepsilon\{1, \ldots, k\}$. To see this, consider the system of equations

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{k}\right)_{j} \circ x_{k+1}=a_{j}, \quad 1 \leq j \leq k \\
& \left(x_{1}, \ldots, x_{k}\right)_{i} * x_{k+1}=a_{k+1} .
\end{aligned}
$$

Then the two simultaneous equations

$$
\left(x_{1}, \ldots, x_{k}\right)_{i} \circ x_{k+1}=a_{i}, \quad\left(x_{1}, \ldots, x_{k}\right)_{i} * x_{k+1}=\alpha_{k+1}
$$

have a unique solution $\left(x_{1}, \ldots, x_{k}\right)_{i}$ and x_{k+1}. Once x_{k+1} is determined, the equations

$$
\left(x_{1}, \ldots, x_{k}\right)_{j} \circ x_{k+1}=a_{j}
$$

determine $\left(x_{1}, \ldots, x_{k}\right)_{j}$ for all $j=1, \ldots, i-1, i+1, \ldots, k$. Now by the orthogonality of the k-cubes the values of x_{1}, \ldots, x_{k} are determined.

Since pairs of orthogonal Latin squares exist for all orders $n \neq 2,6$, it follows that there exist orthogonal k-tuples of Latin k-cubes for all k provided the order n is different from 2 or 6 . It is obvious that there are no orthogonal k-tuples of Latin k-cubes of order 2 for any $k \geq 2$. For order $n=6$ and dimension $k>2$, neither the existence nor the nonexistence of orthogonal k tuples of k-cubes is known. It is therefore worth mentioning the following conditional fact.
Theorem II-1: If there exists a k-tuple of orthogonal Latin k-cubes of order n then there exists an ℓ-tuple of orthogonal Latin ℓ-cubes of order n for every $\ell=1+s(k-1), s=0,1,2, \ldots$.

Proob: By induction on s. The statement is obvious for $s=0$. So assume the statement true for ℓ and let ($)_{1}^{k}, \ldots,()_{k}^{k}$ denote the orthogonal k-cubes
and let ()$_{1}^{l}, \ldots,()_{l}^{l}$ denote the orthogonal l-ccubes. Then we construct the following set of Latin ($\ell+k-1$)-cubes.

$$
\begin{aligned}
\left(a_{1}, \ldots, a_{\ell+k-1}\right)_{1}^{\ell+k-1} & =\left(\left(a_{1}, \ldots, a_{\ell}\right)_{1}^{\ell}, a_{\ell+1}, \ldots, a_{\ell+k-1}\right)_{1}^{k} \\
\left(a_{1}, \ldots, a_{\ell+k-1}\right)_{2}^{\ell+k-1} & =\left(\left(a_{1}, \ldots, a_{\ell}\right)_{1}^{\ell}, a_{\ell+1}, \ldots, a_{\ell+k-1}\right)_{2}^{k} \\
& \vdots \\
\left(a_{1}, \ldots, a_{\ell+k-1}\right)_{k}^{\ell+k-1} & =\left(\left(a_{1}, \ldots, a_{\ell}\right)_{1}^{\ell}, a_{\ell+1}, \ldots, a_{\ell+k-1}\right)_{k}^{k} \\
\left(a_{1}, \ldots, a_{\ell+k-1}\right)_{k+1}^{\ell+1} & =\left(\left(a_{1}, \ldots, a_{\ell}\right)_{2}^{\ell}, a_{\ell+1}, \ldots, a_{\ell+k-1}\right)_{1}^{k} \\
\left(a_{1}, \ldots, a_{\ell+k-1}\right)_{k+2}^{\ell+k-1} & =\left(\left(a_{1}, \ldots, a_{\ell}\right)_{3}^{\ell}, a_{\ell+1}, \ldots, a_{\ell+k-1}\right)_{1}^{k} \\
& \vdots
\end{aligned}
$$

$$
\left(a_{1}, \ldots, a_{\ell+k-1}\right)_{\ell+k-1}^{\ell+k-1}=\left(\left(a_{1}, \ldots, a_{\ell}\right)_{\ell}^{\ell}, a_{\ell+1}, \ldots, a_{\ell+k-1}\right)_{1}^{k}
$$

From the orthogonality of ()$_{1}^{k}, \ldots,()_{k}^{k}$ it follows that the equations

$$
\left(x_{1}, \ldots, x_{\ell+k-1}\right)_{i}^{\ell+k-1}=a_{i} ; \quad i=1, \ldots, k
$$

determine $\left(x_{1}, \ldots, x_{\ell}\right)_{1}^{\ell}, x_{\ell+1}, \ldots, x_{\ell+k-1}$. Once $x_{\ell+1}, \ldots, x_{\ell+k-1}$ are determined, then the equations

$$
\left(x_{1}, \ldots, x_{\ell+k-1}\right)_{k+j}^{\ell+k-1}=a_{k+j} ; \quad j=1, \ldots, \ell-1
$$

determine $\left(x_{1}, \ldots, x_{l}\right)_{j+1}^{\ell}$. Now, by the orthogonality of ($)_{1}^{\ell}, \ldots,()_{l}^{\ell}$, this determines x_{1}, \ldots, x_{ℓ}.
111. ORTHOGONAL $(k+1)$-TUPLES OF LATIN k-CUBES

The above construction yielded a set of 4 orthogonal 3-cubes constructed with the help of a pair or orthogonal Latin squares $a \circ b$ and $a * b$. It is natural to ask whether analogous constructions exist for higher dimensions. At the moment we have only succeeded in doing this for dimensions 4 and 5.

Theorem III-1: The 4-cubes

$$
\begin{aligned}
& (a b c d)_{1}^{4}=(a \circ b) \circ(c \circ d) \\
& (a b c d)_{2}^{4}=(a \circ b) *(c \circ d) \\
& (a b c d)_{3}^{4}=(a * b) \circ(c * d) \\
& (a b c d)_{4}^{4}=(a * b) *(c * d) \\
& (a b c d)_{5}^{4}=(a \circ b) \circ(c * d)
\end{aligned}
$$

form an orthogonal set.
Proof: We need to show that the equations

$$
(x y z w)_{i}^{4}=a_{i}
$$

determine x, y, z, w when i runs through any four of the five values. Consider first the case $i=1,2,3,4$. Then the first two equations determine $x \circ y$, $z \circ w$ and the next two equations determine $x * y, z * w$. Now $x \circ y$ and $x * y$ determine x, y and $z \circ w, z * w$ determine z, w.

Now assume that one of the first four values of i is omitted. By symmetry we may assume $i \neq 4$. Then the first two equations still determine $x \circ y, z \circ w$. Once $x \circ y$ is determined, the last equation determines $z * w$ and once $z * w$ is determined, the third equation determines $x * y$. The rest is as before.
$\frac{\text { Theorem III-2: }}{\text { the } 5 \text {-cubes }}$ Let $)_{1}^{3},()_{2}^{3},()_{3}^{3}$ denote an orthogonal set of 3 -cubes. Then

$$
\begin{aligned}
& (a b c d e)_{1}^{5}=(a b c)_{1}^{3} \circ(d \circ e) \\
& (a b c d e)_{2}^{5}=(a b c)_{1}^{3} *(d \circ e) \\
& (a b c d e)_{3}^{5}=(a b c)_{2}^{3} \circ(d * e) \\
& (a b c d e)_{4}^{5}=(a b c)_{2}^{3} *(d * e) \\
& (a b c d e)_{5}^{5}=(a b c)_{3}^{3} \circ(d \circ e) \\
& (a b c d e)_{6}^{5}=(a b c)_{3}^{3} \circ(d * e)
\end{aligned}
$$

form an orthogonal set.
Proof: Consider the set of equations

$$
(x y z u v)_{i}=a_{i}
$$

where i runs through five of the six values. If $i \neq 5$ or 6 then the first two equations determine $(x y z)_{1}^{3}$ and $u \circ v$ and the second two equations determine $(x y z)_{2}^{3}$ and $u * v_{3}$. Thus, u, v are determined and, therefore, the last equation determines $(x y z)_{3}^{3}$ and thus x, y, z are determined.

If i omits one of the first four values, we may assume by symmetry $i \neq 4$. Then the first two equations determine $(x y z)_{1}^{3}$, and $u \circ v$. Now $i=5$ determines (xyz) ${ }_{3}^{3}$ and thereby $i=6$ determines $u * v$. Finally, $i=3$ determines ($\left.x y z\right)_{2}^{3}$, and thus x, y, z, u, v are determined.

Applying these results to the lowest order, $n=3$, we get the surprising result that there exists a $3 \times 3 \times 3$ cube with 4 -digit entries to the base 3 , so that each digit runs through the values $0,1,2$ on every line parallel to an edge of the cube and so that each triple from 000 to 222 occurs exactly once in every position as a subtriple of a quadruple. Similarly, there exists a 3×3 $\times 3 \times 3$ cube with 5-digit entries, and all quadruples from 0000 to 2222 occur exactly once in every position as subquadruples of the quintuples. Finally, there exists a $3 \times 3 \times 3 \times 3 \times 3$ cube with 6 -digit entries, every digit running through $0,1,2$ on every line parallel to an edge and every quintuple occurring exactly once in every position as a subquintuple.

There does not appear to exist an obvious extension of Theorems III-1 and III-2 to dimensions greater than 5.

It is possible to use the case $n=3$ to show that the existence of two orthogonal Latin squares of order n does not imply the existence of more than 4 orthogonal 3-cubes or 5 orghogonal 4-cubes of order n.
Theorem III-3: There do not exist 5 orthogonal 3 -cubes of order 3.
Proof: Since relabelling the entries in the cube affects neither Latinity nor orthogonality, we may assume that $(i 00)_{j}=i$ for all the 3-cubes ($)_{j}$. So the entries $(010)_{j}$ are all 1 or 2. If there are 5 orthogonal 3-cubes, then no 3 of them can have the same entry in the position (010$)_{j}$, since these triples occur already in the positions $(i 00)_{j}$. But in 5 entries 1 or 2 , there must be three equal ones.
Theorem III-4: There do not exist 6 orthogonal 4 -cubes of order 3 .
Proof: As before, assume $(i 00)_{j}=i, j=1, \ldots, 6$. Since all entries (010) ${ }_{j}$ are either 1 or 2 and no four of them are equal, we may assume that the entries are 111222 as $j=1, \ldots, 6$. Hence, the entries $(020)_{j}$ are 222111 in the same order. Now the entries $(001)_{j}$ and (002) j_{j} must also be three $1^{\prime} s$ and three 2^{\prime} s and cannot agree with 111222 or 222111 in four positions. But the agreement is always in an even number of positions, and if the agreement with 111222 is in
$2 k$ positions, then the agreement with 222111 is in $6-2 k$ positions and one of these numbers is at least 4.

REFERENCES

1. Joseph Arkin \& E. G. Straus. "Latin K-Cubes." The Fibonacci Quarterly 12 (1974):288-92.
2. Joseph Arkin, Verner E. Hoggatt, Jr., \& E. G. Straus. "Systems of Magic Latin k-Cubes." Canadian J. Math. 28 (1976):261-70.
\#\#\#\#\#

ON THE "QX + 1 PROBLEM," Q ODD-II

RAY STEINER
Bowling Green State University, Bowling Green, OH 43403
In [1] we studied the functions

$$
f(n)= \begin{cases}(5 n+1) / 2 & n \text { odd }>1 \\ n / 2 & n \text { even } \\ 1 & n=1\end{cases}
$$

and

$$
g(n)= \begin{cases}(7 n+1) / 2 & n \text { odd }>1 \\ n / 2 & n \text { even } \\ 1 & n=1\end{cases}
$$

and proved:

1. The only nontrivial circuit of f which is a cycle is

$$
13 \xrightarrow{3} 208 \xrightarrow{4} 13 .
$$

2. The function g has no nontrivial circuits which are cycles.

In this note, we consider briefly the general case for this problem and present the tables generated for the computation of $\log _{2}(5 / 2)$ and $\log _{2}(7 / 2)$ for the two cases presented in [1].

Let

$$
h(n)= \begin{cases}(q n+1) / 2 & n \text { odd, } n>1, q \text { odd } \\ n / 2 & n \text { even } \\ 1 & n=1\end{cases}
$$

Then, as in [1], we have
Theorem 1: Let $v_{2}(m)$ be the highest power of 2 dividing $m, m \varepsilon Z$, and let n be an odd integer >1, then

$$
n<h(n)<\ldots<h^{k}(n), \text { and } h^{k+1}(n)<h(n),
$$

where $k=v_{2}((q-2) n+1)$.
Also, the equation corresponding to Eq. (1) in [1] is

$$
\begin{equation*}
2^{j}((q-2) n j+1)=q^{j}((q-2) n+1) \tag{1}
\end{equation*}
$$

Again, we write

$$
n \xrightarrow{k} m \xrightarrow{\ell} n^{*}
$$

where $\ell=v_{2}(m), n^{*}=m / 2^{l}, k=v_{2}((q-2) n+1)$ and

$$
2^{k}((q-2) m+1)=q^{k}((q-2) n+1)
$$

and obtain our usual definition of a circuit.

[^0]: *Research of this author was supported in part by NSF Grant MCS79-03162.

