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I. INTRODUCTION 

A Latin square of order n can be interpreted as a multiplication table for 
a binary operation on n objects 09 1, . .., n - 1 with both a right and a left 
cancellation law. That is, if we denote the operation by *, then 

/-, t \ a ' k b - a - k o ^ b ^ o 
b*a=c*a=>b=ce 

In a completely analogous manner, a Latin k-oube of order n is a k-ary 
operation on n objects with a cancellation law in every position. That is9 for 
the operation ( )^ 5 

(1.2) (a15 ..., ai_1, b, ai + 1 , .... ak)^ = (ax, ..., ai_19 c, ai+1, ..., a k ) ^ 

implies b - o for all choices of i = 1, 2, . .., fc and all choices of 

{al9 ...9 a^_ls ai + l9 ..., ak} C {09 1, ...., n - 1} . 

We permit 1-cubes which are just permutations of {0, 1, . .., n - l} . 
Two Latin squares are orthogonal if the simultaneous equations 

(1.3) x -k y = a9 x o y = b 

have a unique solution xsy for every pair a9 b. A set of Latin squares is or-
thogonal if every pair of squares in the set is orthogonal. 

In an analogous manner, a k-tuple of Latin k-oubes is orthogonal if the 
simultaneous equations 

\X ̂  9 X 2 5 . . . 9 *̂  fc ' 1 "~ 1 

(1.4) ^ i 9 x29 °°" xy)i = ai 

\x, 9 ^ 2 ' oo.9 x ' k ) k — ak 

have a unique solution x19 ..., #k for all choices of ax 9 ..., afe . 
A set o/ Latin k-oubes is orthogonal if every /c-tuple of the set is orthog-

onal. 
In earlier papers, [1] and [2]9 we showed that the existence of a pair of 

orthogonal Latin squares can be used for the construction of a quadruple of 
orthogonal Latin cubes (3-cubes) and for the construction of orthogonal fc-tuples 
of Latin k-cubes for every k >_ 3. In this note, we examine in greater detail 
what sets of orthogonal Latin /c-cubes can be constructed by composition from 
cubes of lower dimensions. 

^Research of this author was supported in part by NSF Grant MCS79-03162, 
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II. COMPOSITION-OF LATIN CUBES 

Let C = (a-i s . . ., as) be a Latin s-cube and let C. = (b ., 5 Z?.0, ..., 2?.̂  ). 
be Latin fc^-cubes £ = 1, 29 ..., s. Then 

C = (6 ]_ J ^2» • • • 5 ^S / 

is a Latin /c-cube, where fe = kx + fc2 + ••• + fce. 
To see this we need only check that the cancellation law (1.2) holds. Now 

let all the entries be fixed except for the entry bij in the jth place of C^ . 
Since C is a Latin cube it follows that, if the values of C* are equal for two 
different entries of bij then the values of C^ must be equal for those two en-
tries. This contradicts the fact that C^ is a Latin cube. 

This composition, while algebraically convenient9 is not intuitive and we 
refer the reader to [1] where we explicitly constructed a quadruple of 3-cubes 
starting from a pair of orthogonal Latin squares of order 3. In the present 
notation, starting from a * b and a ° b as orthogonal Latin squares, we con-
structed the quadruples 

(a * b) * c9 (a * b) o c, (a © b) * o, (a ° b) ° a 
or, equivalently, 

a * (b * o), a * (b °  o.) 9 a o (2? * a), a ° (b ° o) 
as orthogonal quadruples of cubes. 

Similarly, if ( ) 1 , ...» ( )^ denote an orthogonal set of Latin /c-cubes, 
then 

(a15 ..., ak)± o ak + 1, (a,, ..., afe)2 °  afc + 1, ..., (ax, ..., ak)k ° a k + 1 , 

(ax, ..., afe), * afc+1 

is an orthogonal (k +•1)-tuple of Latin (/c + 1)-cubes for any i e {l, ..., /c}. 
To see this, consider the s}fstem of equations 

(xl9 .. ., xk). o ̂ k + 1 = aj-, 1 £ j £ /c 

0rl9 ..., xk)i -k xk + 1 = ak + 1-
Then the two simultaneous equations 

(x19 ..., a:^)^ °  xk + 1 = â -, (#]_, ..., xk)i -k xk + 1 = afe + 1 

have a unique solution (a^, ..., xk)i and #fe + 1. Once %k + 1 is determined, the 
equations 

(x1$ . .., a ^ o xk + 1 = a^ 

determine (̂ 1, ..., xk)j for all J = 1, ..., i - 1, i + 1 , ..., k. Now by the 
orthogonality of the /c-cubes the values of x , . . ., rcfe are determined. 

Since pairs of orthogonal Latin squares exist for all orders n ^ 2,6, it 
follows that there exist orthogonal ^-tuples of Latin /c-cubes for all k provided 
the order n is different from 2 or 6. It is obvious that there are no orthog-
onal /c-tuples of Latin /c-cubes of order 2 for any k _> 2. For order n = 6 and 
dimension k > 2, neither the existence nor the nonexistence of orthogonal k-
tuples of /c-cubes is known. It is therefore worth mentioning the following 
conditional fact. 

ThdOHOxn II-?.* If there exists a /c-tuple of orthogonal Latin /c-cubes of order n 
then there exists an £-tuple of orthogonal Latin £-cubes of order n for every 
% = 1 + s(k - 1), 8 = 0, 1, 2, .... . 

Vh.00^1 By induction on s. The statement is obvious for s = 0. So assume 
the statement true for £ and let ( ) 1 9 ..., ( ), denote the orthogonal /c-cubes 
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and let ( . ) * , ..., ( ) \ denote the orthogonal £~cubes. Then we construct the 
following set of Latin (£ + k - l)-cubes. 

( a x » . • • • » ^£ + fe>i)i = ( ( ^ i » • • • s <ZfL)l * a £ + l 9 • • ' • » a£+fe-l)l 

(ax , . • . . , as,+ fe-i)2 = ( ( a i » • • • » a J l ) i s a H l » • • • » a i + k-1^2 

(a 1, ..., ^ J l + ^ _ 1 ) £ + k_1 ((fli> ° »9» a£)£» S + i 5 • •8 9 a£+k-i)i# 

From the orthogonality of ( ) 1 $ — , ( ) it follows that the equations 

(x±s ..., x
l + k,1)i = ail £ = 19 .... ̂  

£ 
de te rmine ( ^ , . . . , # £ ) 1 9 #£ + ia • • - » ^ + ̂ _ i • 0 n c e x £ + l 5 e s o , #£+fc_i a r e d e t e r -
mined, then t h e e q u a t i o n s 

(a:1 9 . . . , x
Sj + k.1)k+-j = ak + jl Q = 1» . . . » & - 1 

determine (a^ , • ••»#fc)j + i- Now, by the orthogonality of ( ) l 9 . .., ( ) z , this 
determines x , ..., a?r 

111. ORTHOGONAL (fe + 1)-TUPLES OF LATIN fc-CUBES 

The above construction yielded a set of 4 orthogonal 3-cubes constructed 
with the help of a pair or orthogonal Latin squares a o b and a % b* It is 
natural to ask whether analogous constructions exist for higher dimensions. At 
the moment we have only succeeded in doing this for dimensions 4 and 5. 

Thzotim Ul-1: The 4-cubes 

(abcd)\ = (a o b) o (a o d) 

(abod)\ = (a o b) * (c o d) 

(abcd)\ = (a * b) o (c * J) 

(afo?d)[J = (a * b) * (<? * d) 
(abed) 5 = (a °  2?) °  (<? * d) 

form an orthogonal set. 

VftOO^t We need to show that the equations 

(ajz/sw)̂  = at 

determine x,y9 z9w when £ runs through any four of the five values. Consider 
first the case £ = 1, 2, 39 4. Then the first two equations determine x °  y9 
z o w and the next two equations determine x * y 9 z * w. Now x ° y and x *• y 
determine x9y and z ° w9 z * w determine s,ii?. 

Now assume that one of the first four values of £ is omitted. By symmetry 
we may assume £^4. Then the first two equations still determine x o y9 z o w. 
Once ̂  o 2/ is determined, the last equation determines z * W and once z * W is 
determined, the third equation determines x * y« The rest is as before. 
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Tk&o/iOJfn 111-2: Le t ( ) * , ( ' ) * , ( )3
3 denote an o r t h o g o n a l s e t of 3 - cubes . Then 

t h e 5-cubes 
(abode)^ = (abo)\ o (doe) 

(abode)I = (abo)I * (d ° e) 

(atecie)^ = (abo) I o (^ * e) 

(abode)* = (abo)I * (c? * 0) 

o 3 

(a2?c?cie)g = (abo)3 ° (^ * e) 

form an o r t h o g o n a l s e t . 
VK.00^1 Consider the set of equations 

(xyzuv)i = a^ 

where £ runs through five of the six values. If i ^ 5 or 6 then the first two 
equations determine (xyz)^ and u o v and the second two equations determine 
(xyz)\ and u * V. Thus9 u9V are determined and, therefore, the last equation 
determines (xyz)\ and thus x9y9 z axe determined. 

If £ omits one of the first four values, we may assume by symmetry £ ^ 4. 
Then the first two equations determine (xyz)^9 and u °  V. Now £ = 5 determines 
(xyz)3

3 and thereby £ = 6 determines u * v. Finally, £ - 3 determines (xyz)\9 
and thus #,2/, s,w, i? are determined. 

Applying these results to the lowest order, n = 3, we get the surprising 
result that there exists a 3 x 3 x 3 cube with 4-digit entries to the base 3, 
so that each digit runs through the values 0, 1, 2 on every line parallel to an 
edge of the cube and so that each triple from 000 to 222 occurs exactly once in 
every position as a subtriple of a quadruple. Similarly, there exists a 3 x 3 
x 3 x 3 cube with 5-digit entries, and all quadruples from 0000 to 2222 occur 
exactly once in every position as subquadruples of the quintuples. Finally, 
there exists a 3 x 3 x 3 x 3 x 3 cube with 6-digit entries, every digit running 
through 0, 1, 2 on every line parallel to an edge and every quintuple occurring 
exactly once in every position as a subquintuple. 

There does not appear to exist an obvious extension of Theorems III-l and 
III-2 to dimensions greater than 5. 

It is possible to use the case n = 3 to show that the existence of two or-
thogonal Latin squares of order n does not imply the existence of more than 4 
orthogonal 3-cubes or 5 orghogonal 4-cubes of order n. 

ThdOKOm 111-3' There do not exist 5 orthogonal 3-cubes of order 3. 

VtiOO^i Since relabelling the entries in the cube affects neither Latinity 
nor orthogonality, we may assume that (£00)̂ - = £ for all the 3-cubes ( )J- . So 
the entries (010)j are all 1 or 2. If there are 5 orthogonal 3-cubes, then no 
3 of them can have the same entry in the position (010)^, since these triples 
occur already in the positions (£00)•. But in 5 entries 1 or 2, there must be 
three equal ones. 

Th<LO>iQJtn 111-4: There do not exist 6 orthogonal 4-cubes of order 3. 

VK.00^: AS before, assume (£00)^ = £, J=l, ..., 6. Since all entries (010)^ 
are either 1 or 2 and no four of them are equal, we may assume that the entries 
are 111222 as J = 1, ..., 6. Hence, the entries (020)^ are 222111 in the same 
order. Now the entries (001)̂ - and (002)^ must also be three l's and three 2fs 
and cannot agree with 111222 or 222111 in four positions. But the agreement is 
always in an even number of positions, and if the agreement with 111222 is in 
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2k positions, then the agreement with 222111 is in 6 - 2k positions and one of 
these numbers is at least 4. 
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In [1] we studied the functions 

I (5n + l)/2 n odd > 1 
f(n) = <! n/2 n even 

I 1 n - 1 
and 

( {In + l)/2 n odd > 1 
g(n) = < n/2 n even 

( 1 n == 1 
and proved: 

1. The only nontrivial circuit of / which is a cycle is 
13 - ^ 208 -^ 13. 

2. The function g has no nontrivial circuits which are cycles. 
In this note, we consider briefly the general case for this problem and 

present the tables generated for the computation of log2(5/2) and log2(7/2) for 
the two cases presented in [1]. 

Let 
C (qn+l)/2 n odd, n > 1, q odd 

h(n) = < n/2 n even 
( 1 n = 1 

Then, as in [1], we have 

Th<lOh.m 1: Let V2(m) be the highest power of 2 dividing m9 m e Z, and let n be 
an odd integer > 1, then 

n < h(n) < ...... < hk(n), and hk+1(n) < h(n), 

where k = v2((q - 2)n + 1 ) . 
A l s o , t h e e q u a t i o n co r r e spond ing t o Eq. (1) in [1] i s 

(1) 2J\(q - 2 )n j + 1) = qHiq - 2)n + 1 ) . 

Again, we write 
n — y m - ^ n* 

where £ = V2(m)9 n* = w/2£, k = v2((q - 2)n + 1) and 

2fe((q - 2)m + 1) = qHiq - 2)n + 1) 

and obtain our usual definition of a circuit. 


