$4 a, 5 a$ gives three steps more than $a, 0, a, 2 a$. Hence, we can have many sets of four numbers of the form $0, a, b, c$ having the same number of steps.

However, we can tell the number of steps of the reduced set $0, a, b, c$ in the following cases:
$0,0,0, a(a>0)$ five rows; 0, 0, $a, a(a>0)$ four rows;
$0,0, a, b(a<b \leq 2 a)$ five rows; $0,0, a, 2 a+x(x>0)$ seven rows;
$0,0, a, n a+x(n \geq 3)$ seven rows; $0, a, 0, a(a>0)$ three rows;
$0, a, 0, b(a \neq b)$ five rows; $0, a, b, c(b=a+c, a=c>0)$ three rows;
$0, a, b, c(b=a+c, a \neq c)$ four rows;
$0, a, b, c(c=a+b, a=b>0)$ four rows;
$0, a, b, c(c=a+b, a<b)$ six rows; and
$0, a, b, c(c=a+b, a>b)$ four rows.

From the above, it is clear that the only case which presents difficulty in deciding the number of steps without actual calculation is

$$
0, a, b, c(a b c \neq 0, b \neq a+c, c \neq a+b)
$$

where we can assume $a<c$.

REFERENCES

1. S. J. Bezuszka \& M. J. Kenney. "An Application of Tribonaci Numbers." $A B-$ stracts, International Congress of Mathematics of Short Communications, August 1978, p. 33 (Helsinki, Finland).
2. S. J. Bezuszka \& Lou D'Angelo. "The Application of Tribonacci Numbers." The Fibonacci Quarterly 15 (1977):140-44.
3. Hansraj Gupta. "On Cycles of K Integers." Indian J. Pure Appl. Math. 11 (4), April 1980.
4. John M. Hammersby. "Sequences of Absolute Differences." SIAM Review 12 (2), April 1970.
\#妆***

ASYMPTOTIC BEHAVIOR OF LINEAR RECURRENCES

JOHN R. BURKE and WILLIAM A. WEBB
Washington State University, Pullman, WA 99164
In general, it is difficult to predict at a glance the ultimate behavior of a linear recurrence sequence. For example, in some problems where the sequence represents the value of a physical quantity at various times, we might want to know if the sequence is always positive, or at least positive from some point on.

Consider the two sequences:
and

$$
w_{0}=3, w_{1}=3.01, w_{2}=3.0201
$$

$$
\begin{aligned}
w_{n+3} & =3.01 w_{n+2}-3.02 w_{n+1}+1.01 w_{n} \quad \text { for } n \geq 0 \\
v_{0} & =3, v_{1}=3.01, v_{2}=3.0201
\end{aligned}
$$

and

$$
v_{n+3}=3 v_{n+2}-3.01 v_{n+1}+1.01 v_{n} \quad \text { for } n \geq 0
$$

The sequence $\left\{\omega_{n}\right\}$ is always positive, but the sequence $\left\{v_{n}\right\}$ is infinitely often positive and infinitely often negative. This last fact is not obvious from looking at the first few terms of $\left\{v_{n}\right\}$ since the first negative term is v_{735}.

Clearly, the behavior of a recurrence sequence depends on the roots of its characteristic polynomial. We will prove some results which make this dependence precise.

Let

$$
\begin{equation*}
u_{n}=a_{1} u_{n-1}+a_{2} u_{n-2}+\cdots+a_{k} u_{n-k}, a_{i} \varepsilon R, 1 \leq i \leq k \tag{1}
\end{equation*}
$$

denote a kth-order linear recurrence with corresponding characteristic polynomial

$$
p(x)=x^{k}-a_{1} x^{k-1}-\cdots-a_{k}
$$

For simplicity we shall assume $p(x)$ has distinct roots (although possibly complex). All the results stated here carry through in the case that $p(x)$ has multiple roots and we invite the interested reader to verify such cases in order to obtain a more complete understanding.

The terms of the sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ defined by (1) can be expressed in terms of the roots of $p(x)$ by use of the Binet formula as follows:

$$
\begin{equation*}
u_{n}=\sum_{i=1}^{s} c_{r_{i}} r_{i}^{n}+\sum_{i=s+1}^{t}\left(c_{\alpha_{i}} \alpha_{i}^{n}+\bar{c}_{\alpha_{i}} \bar{\alpha}_{i}^{n}\right)=\sum_{i=1}^{s} c_{r_{i}} r_{i}^{n}+\sum_{i=s+1}^{t} 2 \operatorname{Re}\left(c_{\alpha_{i}} \alpha_{i}^{n}\right) \tag{2}
\end{equation*}
$$

where $r_{i}, 1 \leq i \leq s$, denote the real roots of $p(x)$ and $\alpha_{i}, s+1 \leq i \leq t$ denote the roots with nonzero imaginary parts. It is assumed $c_{r_{i}}$ and $c_{\alpha_{i}}$ are nonzero.

We are now ready to determine under what conditions the tail of the sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ will contain only positive terms. We begin with a definition.
Definition: A sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ is said to be asymptotically positive (denoted a.p.) if there exists $N \in Z$ such that for all $n \geq N$ we have $u_{n}>0$.

We first prove a lemma that will shed light on the effects of a complex root of $p(x)$ on the behavior of the sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$.
Lemma 1: If $\theta \not \equiv 0 \bmod \pi$, then the sequence $\{\cos (\lambda+n \theta)\}_{n=0}^{\infty}, \lambda, \theta \in \mathbb{R}$, has intinitely many positive and infinitely many negative terms.
Proot: Case 1. - θ is a rational multiple of 2π. Then there exist integers s and $t,(s, t)=1$, such that $\frac{s}{t} 2 \pi=\theta$. Since $\theta \not \equiv 0 \bmod \pi$, we have $t \geq 3$. Observing that

$$
\cos (\lambda+n \theta)=\operatorname{Re}\left\{e^{i(\lambda+n \theta)}\right\},
$$

we turn our attention to the points $\left\{e^{i(\lambda+n \theta)}\right\}_{n=1}^{t}$ in \mathbb{C}. The image points in \mathbb{C} differ in argument by at most $\frac{2}{3} \pi$ radians for any two neighboring points. Thus there is always at least one point in each of the half planes $\operatorname{Re}\{z\}>0$ and $\operatorname{Re}\{z\}<0$. Since $\cos (\lambda+n \theta)$ is periodic with period t, and in every t consecutive terms there must be at least one positive and one negative term, the lemma holds.

Case 2. - θ is an irrational multiple of 2π. The sequence $\{\lambda+n \theta\}_{n=0}^{\infty}$ is dense mod 2π. (Indeed, it is uniformly distributed mod 2π [2].) As the cosine is continuous, the image of $\{\lambda+n \theta\}_{n=0}^{\infty}$ under the cosine is dense in $[-1$, 1]. This completes the proof.

We are now ready to state and prove the main result.
Theorem 1: Let u_{n} be a kth-order linear recurrence as in (1) whose characteristic polynomial $p(x)$ has distinct roots. Let Γ be a root of $p(x)$ such that $|\Gamma|>|\gamma|$ where γ is any other root of $p(x)$ with the exception of $\gamma=\bar{\Gamma}$ when Γ is not real.

If $\Gamma>0$ and $c>0$, then $\left\{u_{n}\right\}_{n=0}^{\infty}$ is a.p., and $\left\{u_{n}\right\}_{n=0}^{\infty}$ has infinitely many negative terms otherwise.

Proof: From (2), we have

$$
u_{n}=\sum_{i=1}^{s} c_{r_{i}} r_{i}^{n}+\sum_{i=s+1}^{t} 2 \operatorname{Re}\left(c_{\alpha_{i}} \alpha_{i}^{n}\right)
$$

or, assuming $\Gamma \in \mathbb{R}$, and letting $c=c_{\Gamma}$,

$$
\begin{equation*}
u_{n}=c \Gamma^{n}(1+o(1)) . \tag{3}
\end{equation*}
$$

It is clear from (3) that $\Gamma>0, c>0$, will insure that $\left\{u_{n}\right\}_{n=0}^{\infty}$ is a.p. and that $c<0$ or $\Gamma<0$ will produce infinitely many negative terms.

If Γ is not real, we obtain from (3) by use of Euler's formula

$$
\begin{equation*}
u_{n}=|c||\Gamma|^{n}(\cos (\arg c+n \arg \Gamma))(1+o(1)) . \tag{4}
\end{equation*}
$$

From Lemma 1 , we conclude that $\left\{u_{n}\right\}$ has infinitely many negative terms.
The examples at the beginning of the article serve as a simple illustration. The sequence $\left\{w_{n}\right\}$ has as its Binet formula $w_{n}=1^{n}+1^{n}+(1.01)^{n}$, which is clearly positive for all $n \geq 0$. However, the roots associated with $\left\{u_{n}\right\}$ are $1,1 \pm \sqrt{-1} / 10$. Thus the root called Γ in Theorem 1 is $1+\sqrt{-1} / 10$ which is not real. Therefore $\left\{u_{n}\right\}$ has infinitely many positive and infinitely many negative terms.

We now discuss the case of $p(x)$ having s distinct roots of greatest magnitude $|\Gamma|$. Again appealing to the Binet formula, we have

$$
\begin{align*}
u_{n}=|\Gamma|^{n}\left\{c_{1}+(-1)^{f(n)} c_{2}\right. & +c_{3} \cos \left(\lambda_{3}+n \theta_{3}\right)+\cdots \tag{5}\\
& \left.+c_{s} \cos \left(\lambda_{s}+n \theta_{s}\right)+o(1)\right\}, c_{i} \varepsilon \mathbb{R}
\end{align*}
$$

By letting $f(n)=n$ or $n+1$ we may assume $c_{2} \geq 0$. Also, as the cosine is an even periodic function, $\cos (\lambda+n \theta)=-\cos ((\lambda+\pi)+n \theta)$. Thus when necessary, we may replace $\cos \left(\lambda_{i}+n \theta_{i}\right)$ by $\cos \left(\left(\lambda_{i}+\pi\right)+n \theta_{i}\right)$ and thereby allow us to assume $c_{i} \geq 0,3 \leq i \leq s$.
Theorem 2: Let u_{n} be as in (5). If $c_{1}-c_{2}-\cdots-c_{s}>0$, then $\left\{u_{n}\right\}_{n=0}^{\infty}$ is a.p.

Proof: Let $\eta>0$ be such that

$$
c_{1}-\sum_{i=2}^{s} c_{i}>\eta>0
$$

We have

$$
u_{n}=|\Gamma|^{n}\left(c_{1}+(-1)^{f(n)} c_{2}+c_{3} \cos \left(\lambda_{3}+n \theta_{3}\right)+\cdots+c_{3}\left(\cos \left(\lambda_{s}+n \theta_{s}\right)+g(n)\right)\right.
$$ where $g(n)$ is $O(1)$. Choose N so large that for $n>N,|g(n)|<n / 2$. Then for $n>N$,

$$
\begin{aligned}
u_{n}=|\Gamma|^{n}\left(c_{1}+(-1)^{f(n)} c_{2}\right. & +c_{3} \cos \left(\lambda_{3}+n \theta_{3}\right)+\cdots+c_{3} \cos \left(\lambda_{3}+n \theta_{3}\right) \\
& +g(n)) \geq|\Gamma|^{n}(n-n / 2)=|\Gamma|^{n}(\eta / 2)>0
\end{aligned}
$$

Thus $\left\{u_{n}\right\}_{n=0}^{\infty}$ is a.p.
It may be noted that Theorem 2 is the best possible in the following sense: Let

$$
u_{n}=-\frac{1}{2} u_{n-1}+u_{n-2}-\frac{1}{2} u_{n-3} .
$$

We have

$$
u_{n}=c_{1}(1)^{n}+c_{2}(-1)^{n}+c_{3}\left(-\frac{1}{2}\right)^{n} \text { where } c_{3}\left(-\frac{1}{2}\right)^{n} \text { is } o(1) .
$$

If we choose $c_{1}=c_{2}=1$, then $c_{1}-c_{2}=0$. As every other term of u_{n} is negtive, $\left\{u_{n}\right\}_{n=0}^{\infty}$ is not a.p. Thus the condition $c_{1}-c_{2}-\cdots-c_{3}>0$ may not in general be relaxed.

However, upon examining specific cases, it is often possible to improve Theorem 2. For example, if θ_{i} is a rational multiple of 2π, then
is periodic. Letting

$$
\left\{\cos \left(\lambda_{i}+n \theta_{i}\right)\right\}_{n=0}^{\infty}
$$

is periodic. Letting

$$
\alpha_{i}=\left|\min _{n}\left\{\cos \left(\lambda_{i}+n \theta_{i}\right)\right\}_{i=0}^{n}\right|
$$

we may use, in Theorem 2, the condition

$$
c_{1}-c_{2}-\cdots-\alpha_{i} c_{i}-\cdots-c_{s}>0
$$

Thus it is evident how improvements of Theorem 2 can be made when more is known about the roots of the characteristic polynomial.

We now consider the special case of second-order linear recurrences which are completely characterized by the following theorem.

$$
\alpha_{1}=\frac{a+\delta}{2}, \alpha_{2}=\frac{a-\delta}{2}
$$

be the roots of $p(x)=x^{2}-a x-b$ where $\delta=\sqrt{a^{2}+4 b}, \quad\left\{u_{n}\right\}_{n=0}^{\infty}$ is a.p. if and only if $\delta \varepsilon \mathbb{R}$ and either
(i) $a=0, u_{0}>0, u_{1}>0$
or
(ii) $a>0,2 u_{1}>(\alpha-\delta) u_{0}$
where u_{0}, u_{1} are the initial values.
Proof: Case 1. -Suppose that δ is not real. Since $\alpha_{2}=\bar{\alpha}_{1}$, Theorem 1 applies with $\Gamma=\alpha_{1} \ngtr 0$. Thus $\left\{u_{n}\right\}_{n=0}^{\infty}$ is not a.p.

Case 2. $-\alpha_{\infty}<0$. The root of largest absolute value is α_{2}, and $\alpha_{2}<0$. By Theorem $1,\left\{u_{n}\right\}_{n=0}^{\infty}$ has infinitely many negative terms.

Case 3. $-\alpha=0$. The recurrence becomes $u_{n}=b u_{n-2}$ and the roots of $p(x)$ are $\pm \delta / 2$. From the Binet formula, we have

$$
u_{n}=c_{1}\left(\frac{\delta}{2}\right)^{n}+c_{2}\left(-\frac{\delta}{2}\right)^{n}=\left(\frac{\delta}{2}\right)^{n}\left(c_{1}+(-1)^{n} c_{2}\right)
$$

If suffices to show $c_{1}+c_{2}>0$ and $c_{1}-c_{2}>0 . u_{0}=c_{1}+c_{2}$ so we must have $u_{0}>0$. $u_{1}=\frac{\delta}{2}\left(c_{1}-c_{2}\right)$ so that $\frac{2}{\delta} u_{1}=c_{1}-c_{2}>0$. As $\frac{2}{\delta}>0$ we have $u_{1}>0$.

Case 4. $-\alpha>0$. The largest root in absolute value is α_{1}, and $\alpha_{1}>0$. From Theorem 1 it suffices to show $c_{1}>0$. Using Cramer's Rule, we have

$$
c_{1}=\frac{u_{1}-u_{0} \alpha_{2}}{\alpha_{1}-\alpha_{2}}
$$

Since $\alpha_{1}-\alpha_{2}>0$, we require that $u_{1}-u_{0} \alpha_{2}>0$ or $2 u_{1}>u_{0}(\alpha-\delta)$.

REFERENCES

1. James A. Jeske. "Linear Recurrence Relations-Part I." The Fibonacci Quarterly 1 (1965):69-75.
2. L. Kuipers \& H. Niederreiter. Uniform Distribution of Sequences. New York: Wiley-Interscience, 1974.
