ANOMALIES IN HIGHER-ORDER CONJUGATE QUATERNIONS:
 A CLARIFICATION

A. L. IAKIN

University of New England, Armidale, Australia

1. INTRODUCTION

In a previous paper [3], brief mention was made of the conjugate quaternion \bar{P}_{n} of the quaternion P_{n}. Following the definitions given by Horadam [2], Iyer [6], and Swamy [7], we have

$$
\begin{equation*}
P_{n}=W_{n}+i W_{n+1}+j W_{n+2}+k W_{n+3}, \tag{1}
\end{equation*}
$$

and consequently, its conjugate \bar{P}_{n} is given by

$$
\begin{equation*}
\bar{P}_{n}=W_{n}-i W_{n+1}-j W_{n+2}-k W_{n+3} \tag{2}
\end{equation*}
$$

where

$$
\begin{array}{ll}
i^{2}=j^{2}=k^{2}=-1, & i j=-j i=k, \\
j k=-k j=i, & k i=-i k=j .
\end{array}
$$

In [3], T_{n} was defined to be a quaternion with quaternion components P_{n+r} ($r=0,1,2,3$) , that is,

$$
\begin{equation*}
T_{n}=P_{n}+i P_{n+1}+j P_{n+2}+k P_{n+3}, \tag{3}
\end{equation*}
$$

and the conjugate of T_{n} was defined as

$$
\begin{equation*}
\bar{T}_{n}=P_{n}-i P_{n+1}-j P_{n+2}-k P_{n+3} \tag{4}
\end{equation*}
$$

which, with (1), yields

$$
\begin{equation*}
\bar{T}_{n}=W_{n}+W_{n+2}+W_{n+4}+W_{n+6} . \tag{5}
\end{equation*}
$$

Here the matter of conjugate quaternions was laid to rest without investigating further the inconsistency that had arisen, namely, the fact that the conjugate for the quaternion T_{n} [defined in (4) analogously to the standard conjugate quaternion form (2)] was a scalar (5) and not a quaternion as normally defined. This inconsistency, however, made attempts to derive expressions for conjugate quaternions of higher order similar to those of higher-order quaternions established in [4] and [5], rather difficult. The change in notation from that used in [3] to the operator notation adopted in [4] and [5], added further complications. Given that $\Omega W_{n} \equiv P_{n}$ and $\Omega^{2} W_{n} \equiv T_{n}$, the introduction of this operator notation created a whole new set of possible conjugates for each of the higherorder quaternions. For example, for quaternions with quaternion components (quaternions of order 2), we could apparently define the conjugate of $\Omega^{2} W_{n}$ in several ways, viz. (6)-(9):

$$
\begin{align*}
& \Omega \bar{\Omega} W_{n}=\bar{\Omega} W_{n}+i \bar{\Omega} W_{n+1}+j \bar{\Omega} W_{n+2}+k \bar{\Omega} W_{n+3} ; \tag{6}\\
& \bar{\Omega} \Omega W_{n}=\Omega W_{n}-i \Omega W_{n+1}-j \Omega W_{n+2}-k \Omega W_{n+3} ; \tag{7}\\
& \bar{\Omega}^{2} W_{n}=\bar{\Omega} W_{n}-i \bar{\Omega} W_{n+1}-j \bar{\Omega} W_{n+2}-k \bar{\Omega} W_{n+3} ; \tag{8}\\
& \bar{\Omega}^{2} W_{n}=W_{n}-W_{n+2}-W_{n+4}-W_{n+6}-2 i W_{n+1}-2 j W_{n+2}-2 k W_{n+3} . \tag{9}
\end{align*}
$$

It is clear that the difficulties which have arisen are due, in part, to the choice of the defining notation. It is the purpose of this paper to redefine higher-order conjugate quaternions using the more descriptive nomenclature provided by the operator notation as outlined in [4]. We are thus concerned with determining the unique conjugate of a general higher-order quaternion.

2. SECOND-ORDER CONJUGATE QUATERNIONS

We begin by defining the conjugate of ΩW_{n} as $\bar{\Omega} W_{n}$ ($\equiv \bar{P}_{n}$, c.f. (6) in [3]), where

$$
\begin{equation*}
\bar{\Omega} W_{n}=W_{n}-i W_{n+1}-j W_{n+2}-k W_{n+3} \tag{10}
\end{equation*}
$$

Consider (6) and (7) above. If we expand these expressions using (10) and (1) with $\Omega W_{n}=P_{n}$, respectively, we find that

$$
\begin{equation*}
\Omega \bar{\Omega} W_{n}=\bar{\Omega} \Omega W_{n}=W_{n}+W_{n+2}+W_{n+4}+W_{n+6}, \tag{11}
\end{equation*}
$$

which is the same as (5). Since the right-hand side of (5) and_(11) are independent of the quaternion vectors i, j, and $k, \Omega \bar{\Omega} W_{n}, \bar{\Omega} \Omega W_{n}$, and \bar{T}_{n} are not quaternions and, therefore, cannot be defined as the conjugate of $\Omega^{2} W_{n}\left(=\overline{T_{n}}\right)$. We emphasize that \bar{T}_{n}, as defined by (4), 9 (a) of [3], is not the conjugate of T_{n}. Since the expanded expression for $\Omega^{2} W_{n}\left(\equiv T_{n}\right.$, c.f. 8(a) in [3]) is

$$
\begin{equation*}
\Omega^{2} W_{n}=W_{n}-W_{n+2}-W_{n+4}-W_{n+6}+2 i W_{n+1}+2 j W_{n+2}+2 k W_{n+3}, \tag{12}
\end{equation*}
$$

it follows that the conjugate of $\Omega^{2} W_{n}$ must be $\overline{\Omega^{2}} W_{n}$ as given by (9). If we now take (8) and expand the right-hand side, we see that it is identical to the right-hand side of (9), so that the conjugate of $\Omega^{2} W_{n}$ can also be denoted $\bar{\Omega}^{2} W_{n}$. By taking the product of $\Omega^{2} W_{n}$ and $\bar{\Omega}^{2} W_{n}$, we obtain

$$
\begin{align*}
\Omega^{2} W_{n} \bar{\Omega}^{2} W_{n}=W_{n}^{2} & +W_{n+2}^{2}+W_{n+4}^{2}+W_{n+6}^{2} \tag{13}\\
& +4 W_{n+1}^{2}+4 W_{n+2}^{2}+4 W_{n+3}^{2} \\
& -2 W_{n} W_{n+2}-2 W_{n} W_{n+4}-2 W_{n} W_{n+6} \\
& +2 W_{n+2} W_{n+4}+2 W_{n+2} W_{n+6}+2 W_{n+4} W_{n+6}
\end{align*}
$$

and we observe that the right-hand side of this equation is a scalar. Thus $\bar{\Omega}^{2} W_{n}$ preserves the basic property of a conjugate quaternion.

We note in passing that as $\bar{P}_{n} \equiv \bar{\Omega} W_{n}$, the conjugate quaternion \bar{T}_{n} should have been defined as [c.f. (8)],

$$
\begin{equation*}
\bar{T}_{n}=\bar{P}_{n}-i \bar{P}_{n+1}-j \bar{P}_{n+2}-k \bar{P}_{n+3} \tag{14}
\end{equation*}
$$

3. THE GENERAL CASE

In Section 2 above, the conjugate $\overline{\Omega^{2}} W_{n}$ of $\Omega^{2} W_{n}$ was determined by expanding the quaternion $\Omega^{2} W_{n}$ and conjugating in the usual way. It was established that $\bar{\Omega}^{2} W_{n} \equiv \overline{\Omega^{2}} W_{n}$. We now seek to prove that this relationship is generally true, i.e., for any integer $\lambda, \bar{\Omega}^{\lambda} W_{n} \equiv \Omega^{\lambda} W_{n}$.

First, we need to derive a Binet form for the generalized conjugate quaternion of arbitrary order.

As in [5], we introduce the extended Binet form for the generalized quaternion of order λ :

$$
\begin{equation*}
\Omega^{\lambda} W_{n}=A \alpha^{n} \underline{\alpha}^{\lambda}-B \beta^{n} \underline{\beta}^{\lambda} \quad(A, B \text { constants }) \tag{15}
\end{equation*}
$$

where α and β are defined as in Horadam [1] and

$$
\left\{\begin{array}{l}
\underline{\alpha}=1+i \alpha+j \alpha^{2}+k \alpha^{3} \tag{16}\\
\underline{\beta}=1+i \beta+j \beta^{2}+k \beta^{3}
\end{array}\right.
$$

We now define the conjugates $\underline{\bar{\alpha}}$ and $\underline{\bar{\beta}}$ so that

$$
\left\{\begin{array}{l}
\bar{\alpha}=1-i \alpha-j \alpha^{2}-k \alpha^{3} \tag{17}\\
\overline{\bar{\beta}}=1-i \beta-j \beta^{2}-k \beta^{3} .
\end{array}\right.
$$

Substituting the Binet forms, as given by (1.6) in Horadam [1], for the terms on the right-hand side of (10), we obtain

$$
\bar{\Omega} W_{n}=A \alpha^{n}-B \beta^{n}-i\left(A \alpha^{n+1}-B \beta^{n+1}\right)-j\left(A \alpha^{n+2}-B \beta^{n+2}\right)-k\left(A \alpha^{n+3}-B \beta^{n+3}\right)
$$

$$
=A \alpha^{n}\left(1-i \alpha-j \alpha^{2}-k \alpha^{3}\right)-B \beta^{n}\left(1-i \beta-j \beta^{2}-k \beta^{3}\right),
$$

i.e.,

$$
\begin{equation*}
\bar{\Omega} W_{n}=A \alpha^{n} \underline{\bar{\alpha}}-B \beta^{n} \underline{\bar{\beta}}, \tag{18}
\end{equation*}
$$

which is the Binet form for the conjugate quaternion $\bar{\Omega} W_{n}$. This result can easily be generalized by induction, so that, for λ an integer,

$$
\begin{equation*}
\bar{\Omega}^{\lambda} W_{n}=A \alpha^{n} \underline{\bar{\alpha}}^{\lambda}-B \beta^{n} \underline{\bar{\beta}}^{\lambda} . \tag{19}
\end{equation*}
$$

Lemma: For some integer λ,

$$
\bar{\alpha}^{\lambda}=\overline{\alpha^{\lambda}} \quad \text { and } \quad \underline{\bar{B}}^{\lambda}=\overline{\underline{B}^{\lambda}} .
$$

Proof: We will prove only the result for the quaternion α, as the proof of the result for $\underline{\beta}$ is identical. From (16) above, it follows that

$$
\left\{\begin{align*}
\underline{\alpha}^{2} & =\left(1+i \alpha+j \alpha^{2}+k \alpha^{3}\right)^{2} \tag{20}\\
& =1-\alpha^{2}-\alpha^{4}-\alpha^{6}+2 i \alpha+2 j \alpha^{2}+2 k \alpha^{3} \\
& =2 \alpha-\left(1+\alpha^{2}+\alpha^{4}+\alpha^{6}\right) . \tag{21}\\
& S_{\alpha}=1+\alpha^{2}+\alpha^{4}+\alpha^{6},
\end{align*}\right.
$$

Letting
we have

$$
\begin{equation*}
\underline{\alpha}^{2}=2 \underline{\alpha}-S_{\alpha} . \tag{22}
\end{equation*}
$$

Hence, on multiplying both sides of this equation by $\underline{\alpha}$, we obtain

$$
\underline{\alpha}^{3}=2 \underline{\alpha}^{2}-\underline{\alpha}_{\alpha}
$$

which, by (22) becomes

$$
\underline{\alpha}^{3}=\left(4-S_{\alpha}\right) \underline{\alpha}-2 S_{\alpha}
$$

If we continue this process, a pattern is discernible from which we derive a general expression for $\underline{\alpha}^{\lambda}$ given by

$$
\begin{align*}
& \underline{\alpha}^{\lambda}=\{ \left\{\left[\frac{\overline{\lambda-1}]}{2}\right]\right. \tag{23}\\
&\left.\left.\left.\sum_{r=0}^{\lambda-1-r}\right)_{r}\right) 2^{\lambda-1-2 r}\left(S_{\alpha}\right)^{r}(-1)^{r}\right\} \underline{\alpha} \\
&-\left\{\sum_{r=0}^{\left[\frac{\lambda-2}{2}\right]}\binom{\lambda-2-r}{r} 2^{\lambda-2-2 r}\left(S_{\alpha}\right)^{r}(-1)^{r}\right\} S_{\alpha}
\end{align*}
$$

where $\left[\frac{\lambda-1}{2}\right]$ refers to the integer part of $\frac{\lambda-1}{2}$.
From equations (20) and (22), it is evident that

$$
\begin{equation*}
\overline{\alpha^{2}}=2 \underline{\alpha}-S_{\alpha} . \tag{24}
\end{equation*}
$$

Since S_{α} is a scalar, and the only quaternion in the right-hand side of
(23) is $\underline{\alpha}$, it follows that the conjugate $\underline{\alpha}^{\lambda}$ must be

$$
\begin{align*}
\overline{\alpha^{\lambda}}= & \left\{\sum_{r=0}^{\left[\frac{\lambda-1}{2}\right]}\binom{\lambda-1-r}{r} 2^{\lambda-1-2 r}\left(S_{\alpha}\right)^{r}(-1)^{r}\right\} \underline{\alpha} \tag{25}\\
& -\left\{\sum_{r=0}^{\left[\frac{\lambda-2}{2}\right]}\binom{\lambda-2-r}{r} 2^{\lambda-2-2 r}\left(S_{\alpha}\right)^{r}(-1)^{r}\right\} S_{\alpha}
\end{align*}
$$

We now employ the same procedure as we used above to obtain a general expression for α^{λ} [c.f. (23)] to secure a similar result for $\underline{\alpha}^{\lambda}$.

From (17) it ensues that

$$
\begin{aligned}
\underline{\alpha}^{2} & =\left(1-i \alpha-j \alpha^{2}-k \alpha^{3}\right)^{2} \\
& =1-\alpha^{2}-\alpha^{4}-\alpha^{6}-2 i \alpha-2 j \alpha^{2}-2 k \alpha^{3},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\underline{\bar{\alpha}}^{2}=2 \underline{\bar{\alpha}}-S_{\alpha}, \tag{26}
\end{equation*}
$$

and we note that this equation is identical to (24). Multiplying both sides of (26) by $\underline{\alpha}$ gives us

$$
\bar{\alpha}^{3}=2 \bar{\alpha}^{2}-\bar{\alpha}_{\alpha},
$$

which, by (26), yields

$$
\underline{\bar{\alpha}}^{3}=\left(4-S_{\alpha}\right) \underline{\bar{\alpha}}-2 S_{\alpha} .
$$

It is obvious from the emerging pattern that, by repeated multiplication of both sides by $\bar{\alpha}$ and subsequent substitution for $\bar{\alpha}^{2}$ by the right-hand side of (26), the expression derived for $\underline{\alpha}^{\lambda}$ will be precisely (25). Hence, $\underline{\alpha}^{\lambda}=\underline{\alpha}^{\lambda}$. Similarly, it can be shown that $\underline{\bar{\beta}}^{\lambda}=\underline{\underline{\beta}}^{\lambda}$.
Theorem: For λ an integer,

$$
\bar{\Omega}^{\lambda} W=\overline{\Omega^{\lambda}} W \text {. }
$$

Proof: Taking the conjugate of both sides of (15) gives us

$$
\begin{array}{rlr}
\overline{\Omega^{\lambda}} W_{n} & =\overline{A \alpha^{n} \underline{\alpha}^{\lambda}-B \beta^{n} \underline{\beta}^{\lambda}} \\
& =A \alpha^{n} \underline{\alpha}^{\lambda}-B \beta^{n} \underline{\bar{\beta}}^{\lambda} \\
& =A \alpha^{n} \bar{\alpha}^{\lambda}-B \beta^{n} \underline{\bar{\beta}}^{\lambda} \quad \text { (Lemma) } \\
& =\bar{\Omega}^{\lambda} W_{n} \quad \text { [c.f. (] } \tag{19}
\end{array}
$$

as desired.
We have thus established that the conjugate for a generalized quaternion of order λ can be determined by taking λ operations on the conjugate quaternion operator $\bar{\Omega}$. This provides us with a rather simple method of finding the conjugate of a higher-order quaternion.

Finally, let us again consider the conjugate quaternion $\bar{\Omega} W_{n}$. It readily follows from (10) that
i.e.,

$$
\bar{\Omega} W_{n}=2 W_{n}-W_{n}-i W_{n+1}-j W_{n+2}-k W_{n+3},
$$

$$
\bar{\Omega} W_{n}=2 W_{n}-\Omega W_{n}
$$

This equation relates the conjugate quaternion $\bar{\Omega} W_{n}$ to the quaternion ΩW_{n}. If we rewrite (27) as

$$
\bar{\Omega} W_{n}=(2-\Omega) W_{n}
$$

it is possible to manipulate the operators in the ensuing fashion:

$$
\bar{\Omega}^{2} W_{n}=(2-\Omega)^{2} W_{n}=\left(4-4 \Omega+\Omega^{2}\right) W_{n}=4 W_{n}-4 \Omega W_{n}+\Omega^{2} W_{n} .
$$

This result can be verified directly through substitution by (1), (9), and (12), recalling that $P_{n}=\Omega W_{n}$ and $\bar{\Omega}^{2} W_{n}=\overline{\Omega^{2}} W_{n}$. Once again, by induction on λ, it is easily shown that

$$
\begin{equation*}
\bar{\Omega}^{\lambda} W_{n}=(2-\Omega)^{\lambda} W_{n} . \tag{28}
\end{equation*}
$$

It remains open to conjecture whether an examination of various permutations of the operators Ω and $\bar{\Omega}$, together with the operator Δ (defined in [4]) and its conjugate $\bar{\Delta}$, will lead to further interesting relationships for higherorder quaternions.

REFERENCES

1. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3 (1965):161-75.
2. A. F. Horadam. "Complex Fibonacci Numbers and Fibonacci Quaternions." Amer. Math. Monthly 70 (1963):289-91.
3. A. L. Iakin. "Generalized Quaternions with Quaternion Components." The Fibonacci Quarterly 15 (1977):350-52.
4. A. L. Iakin. "Generalized Quaternions of Higher Order." The Fibonacci Quarterly 15 (1977):343-46.
5. A. L. Iakin. "Extended Binet Forms for Generalized Quaternions of Higher Order." (To be published.)
6. M. R. Iyer. "A Note on Fibonacci Quaternions." The Fibonacci Quarterly 7 (1969):225-29.
7. M.N. S. Swamy. "On Generalized Fibonacci Quaternions." The Fibonacci Quarterly 11 (1973):547-49.

ON THE CONVERGENCE OF ITERATED EXPONENTIATION-II*

MICHAEL CREUTZ and R. M. STERNHEIMER
Brookhaven National Laboratory, Upton, NY 11973
In a previous paper [1], we have discussed the properties of the function $f(x)$ defined as:

$$
\begin{equation*}
f(x)=x^{x^{x}} \tag{1}
\end{equation*}
$$

and a generalization of $f(x)$, namely [2, 3],

$$
\begin{equation*}
F_{n}(x)=g_{1}(x)^{g_{2}(x)^{g_{3}(x)^{. . g_{n}(x)}}}=\prod_{j=1}^{n} g_{j}(x), \tag{2}
\end{equation*}
$$

where the $g_{j}(x)$ are functions of a positive real variable x, and the symbol Ξ is used to denote the iterated exponentiation [4]. For both (1) and (2), the

[^0]
[^0]: *This manuscript was authored under U.S. Department of Energy contract \# EY-76-C-02-0016. The U.S. Government, accordingly, retains a nonexclusive, royalty-free license to publish or reproduce the published formof this article, or allow others to do so, for U.S. Government purposes.

