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Z Risi = 
x<.%<_y 

'pq2(R S ^ + R S ) + (1 - q)[R 0S AO + (1 - p2)R ± 15 ' 
r^ x n n+l n+1 ny K ^' L n+Z n+2 s r / n + l n + l 

(1 - q)(p + q - l)(p - q + 1) 

~-y 

n = x -1 

if q + 1 1 .0, p + <? - 1 ̂  0, p - q + 1 i 0. (16) 

In closing, we note that the expressions of this paper can be used to de-
rive some identities among recurrence terms. As an example consider YH^Si with 
Rl and Si identical sequences., i?0 = S0 = 0, i?L = S± = 1, p = 1, <? = 2 + e, and 
limits of summation 0 £ t <_ n. As e -̂  0, the sum approaches a well-defined 
value, and thus the right-hand side of (16) must also have a finite limit. Since 
the denominator goes to 0, so must the numerator. We conclude that the follow-
ing must be true: 

[ 8 i ? ^ + l - Rh' + 2jy = _1 = SRnRn + l " Rl+2 + 1 = 0 
or 

SRnRn + 1 = (Rn + 2 + l)(i?n + 2 - 1) 

if p = 1, q = 2, i?Q = 0, i?x = 1. 
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ITERATING THE PRODUCT OF SHIFTED DIGITS 

SAMUEL S. WAGSTAFF, JR. 
Northern Illinois University, DeKalh, IL 60115 

1. INTRODUCTION 

Let t be a fixed nonnegative integer. For positive integers n written in 
decimal as 

n =t,di ' 1Qi> 
i = 0 

with 0 < d . < 9 and d v > 0, we define 

ft(n) = .[] (* + <*,). 
i = 0 

Also define fQ (0) = 0. Erdos and Kiss [1] have asked about the behavior of the 
sequence of iterates n, ft(n)9 ft (ft (n)) 9. .. . They noted that ,/\(12Q) = 120. 
For t = 0, every such sequence eventually reaches a one-digit number. Sloane 
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[2] has considered this case. For t = 1, we prove that the sequence of iter-
ates from any starting point n remains bounded, and we list the two possible 
cycles. For t _> 109 it is clear that ft (n) > n for every n so that the sequence 
always tends to infinity. We discuss the cases 2 <. t <_ 9 and present numerical 
evidence and a heuristic argument which conclude that every sequence remains 
bounded when t j£ 6 3 while virtually every sequence tends to infinity for t >_1. 
In Table 1 we give the known cycles in which these sequences may be trapped 
when 0 <_ t £ 6. See also [3] for the case t = 0. 

TABLE 1. Some Data on the Cycles of ft for 0 £ t <_ 6 

t 

0 

1 

2 

3 

4 

5 

Least Term 
of Cycle 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

2 
18 

6 
9 
12 
24 
35 
56 

24 
648 

96 
112 
120 
315 
1280 
2688 
4752 
7744 
15840 
24960 
57915 

50 
210 
450 
780 
1500 

Cycle 
Length 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

9 
1 

3 
2 
1 
1 
1 
1 

10 
2 

5 
16 
1 
1 
2 
3 
1 
1 
2 
1 
1 

1 
1 
1 
1 
1 

First Start 
Leading to it 

10 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
18 

2 
1 
12 
16 
35 
56 

1 
134 

1 
37 
29 
135 
589 
1289 
1157 
4477 
4779 
10489 
15579 

50 
57 
3 

158 
4 

# of Starts <. 100000 
Leading to it 

82402 
5 

3213 
15 

894 
607 
6843 

15 
597i 
35 

92043 
7957 

9927 
6 

29105 
60105 

2 
811 

47955 
52045 

6793 
70677 

20 
6 

4798 
6971 
90 
185 

9992 
378 
90 

1 
6 

222 
10 

35726 

(continued) 
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TABLE 1 (continued) 

t 

5 

6 

Least Term 
of Cycle 

1600 
3920 
16500 
16800 
32760 
91728 

1293600 

90 
840 

4320 
9360 
51744 
59400 
60480 
917280 
2419200 

533744640 
1556755200 

139089000960 

Cycle 
Length 

3 
1 
1 
4 
4 
1 
1 

1 
1 
1 
2 
5 
1 
1 
1 
1 

62 
21 
85 

2. THE 

First Start 
Leading to it 

CASE 

228 
22 

1339 
1 

368 
11899 
38899 

34 
4 
3 
35 
18 

7899 
6 

7777 
26778 

38 
1 
5 

t •=• 1 

# of Starts £ 100000 
Leading to it 

7058 
91 
146 

4927 
51483 
300 
30 

3 
40 
329 
550 
2626 
300 
3300 
493 
12 

10968 
25484 
5895 

This is the only nontrivial case in which we can prove that every sequence 
of iterates is bounded. 

Th2.OK.2mt Let n be a positive integer. Then f1(n) = n if and only if n = 18. 
Also fx(n) > n if and only if n = d • 10* - 1, where k >_ 0 and 2 £ d <L 10. In 
In the latter cases f1 (n) = n + 1. Iteration of /1 from a positive starting 
number eventually leads either to the fixed point 18 or to the cycle (2,3, 4, 
5, 6, 7, 8, 9, 10). 

Vtioofc If n = d • 10* - 1 with 2 <_ d <_ 10, then the digits of n are d - 1 and 
k nines. Thus f1(n) = d • 10k = n + 1. Now suppose k >_ I and n has /c + 1 di-
gits, but n is not of the form d.• 10* - 1. Then the low-order k digits are 
not all nines. Write 

n £<** 10* 
i'O 

and let J be the greatest subscript such that J < k and dj- < 9. Then 

(1) Uin) $ (dk + l)(dj + 1)10A 
- dk • 10* + d7- • 10*"1 + (1 + dk(di 9))10 k-i 

Now dj - 9 £ -1 and d^ >̂  1. Hence the last term of (1) is nonpositive, and it 
vanishes if and only if d^ = 1 and dj = 8. Hence f1(n) < n if either dy. > 1 or 
dj < 8. If dk = 1 and dj = 8 and j < k - 1, then also /x (n) < n. Otherwise, 
either n = 18 [and ^(18) = 18] or n has at least three digits, the first two 
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of which are 18. If any lower-order digit were nonzero, the inequality in (1) 
would be strict and give f^n) < n. Finally, if n = 1800...0, clearly 

f-^in) = (1 + 1)(8 + 1) = 18 < n. 

The last statement of the theorem follows easily from the earlier ones by in-
duction on n. For n > 18, either f1(n) < n or f1(f1(n)) < n. 

3- THE CASES t = 2 THROUGH 6 

These five cases are alike in that there is compelling evidence that all 
the sequences are bounded, but we cannot prove it. In Table 1 we gave some data 
on the known cycles of / for 0 <_ t <_ 6. Table 2 lists the cycles of length > 
1. For t <L 5, every starting number up to 100000 eventually reaches one of 
these cycles. For t = 6, the same is true up to 50000. 

TABLE 2. Cycles of at Least Two Terms 
t Cycle 

1 (2F 3F 4» 5» 6f 7» 8r 9r 10) 

2 (6? 8? 10) 
2 (9? 11) 

3 (24? 35? 48? ??y 100? 36* 54? 56? 72? 50) 
3 (648? 693) 

4 (96? 130? 140? 160? 200) 
4 (112? 150? 180? 240? 192? 390? 364? 560? 360? 280? 288? 864? 

960? 520? 216? 300) 
4 (1280? 1440) 
4 (2688? 8640? 3840) 
4 (15840? 17280) 

5 (1600? 1650? 3300) 
5 (16800? 21450? 18900? 27300) 
5 (32760? 36960? 67760? 87120) 

6 (9360? 9720) 
6 (51744? 100100? 63504? 71280? 61152) 
6 (533744640? 833976000? 573168960? 1634592960? 10777536000? 

23678246592? 199264665600? 1034643456000? 1163973888000? 
5504714691840? 6992425440000? 2463436800000? 1015831756800? 
2466927695232? 20495794176000? 36428071680000? 
14379662868480? 279604555776000? 654872648601600? 
703005740236800? 94421561794560? 119870150400000? 
28834219814400? 41821194240000? 5974456320000? 
2642035968000? 2483144294400? 3048192000000? 296284262400? 
445906944000? 384912000000? 49380710400? 22289904000? 
20901888000? 17923368960? 160487308800? 349505694720? 
1100848320000? 322620641280? 187280916480? 906125875200? 
383584481280? 1150082841600? 920066273280? 391283343360? 
499979692800? 4776408000000? 794794291200? 919900800000? 
92588832000? 56330588160? 69709102848? 138692736000? 
385169541120? 451818259200? 401616230400? 65840947200? 
62270208000? 8695185408? 25101014400? 3911846400? 
4000752000) 



Zkk ITERATING, THE PRODUCT OF SHIFTED DIGITS [ O c t . 

TABLE 2 (continued) 
Cyc le 
(1556755200. 4604535936. 12702096000* 8151736320. 
4576860288. 27122135040. 11623772160. 28848089088. 
325275955200. 473609410560. 420323904000. 60466176000. 
24455208960. 70253568000. 24659002368. 68976230400. 
61138022400. 10241925120. 10431590400. 9430344000. 
1574640000) 
(139089000960. 277766496000. 984031027200. 142655385600. 
486857226240. 1239869030400. 2222131968000. 983224811520. 
438126796800. 998587699200. 4903778880000. 4868115033600. 
2661620290560. 2648687247360. 19781546803200. 
38445626419200. 48283361280000. 15485790781440. 
106051785840000. 84580378122240. 45565186867200. 
118144020234240. 47795650560000. 37781114342400. 
18931558464000. 40663643328000. 18284971622400. 
41422897152000. 16273281024000. 6390961274880. 
14978815488000. 87214615488000? 39869538508800. 
219583673971200. 642591184435200. 309818234880000. 
203251004006400. 14898865766400. 256304176128000. 
105450861035520. 112464019261440. 119489126400000. 
80655160320000. 5736063320064. 3112798740480. 6310519488000. 
2218016908800. 2007417323520. 1165698293760. 16476697036800. 
100144080691200. 32262064128000. 6742112993280. 
6657251328000. 2761808265216. 7290429898752. 37777259520000. 
38697020144640. 42796615680000. 37661021798400. 
38944920268800. 92177326080000. 13352544092160. 
19916886528000. 82805964595200? 97371445248000. 
42499416960000. 35271936000000. 5447397795840. 
45218873700000. 14279804098560. 91537205760000. 
14425516385280. 53013342412800. 7604629401600. 
2445520896000. 2529128448000. 2503581696000. 2390026383360. 
2742745743360. 9020284416000. 877879296000. 2009063347200. 
943272345600. 480370176000) 

Some cycles may by reached from only f i n i t e l y many s t a r t i ng numbers. For 
example, i t i s easy to see tha t fs(n) = 50 only when n = 50. The cycle (9, 11) 
for f2 may be reached only from the odd numbers below 12. Only 35 and 53 lead 
to the fixed point 35 of f?m. I t i s a ten-minute exercise to discover a l l twenty 
s t a r t i ng numbers which lead to the fixed point 120 of fi+. The fixed point 90 
for f6 may be reached only from the s t a r t i n g numbers 34, 43, and 90. 

Given a cycle , what i s the asymptotic density of the set of s t a r t i n g num-
bers which lead to i t ? We cannot answer t h i s question even for the two cycles 
for t = 1. Some relevant numerical data i s shown in the l a s t column of Table 
1. Since the d ig i t 0 occurs in almost a l l numbers, the answer to the question 
i s c lear in case t = 0. 

h. THE CASES t = 7 THROUGH 9 

The s t a r t i ng number 5 leads to the fixed point 31746120037632000 of f7. We 
found no other cycles in these three cases . Every sequence with s t a r t i n g num-
ber up to 1000 r i s e s above 101If. Every sequence s t a r t i ng below 17 (except 5 
and 12 for f7) r i s e s above 10 3 0 0 . These observations, together with the heur-
i s t i c argument below, suggest tha t nearly every sequence diverges to i n f i n i t y . 
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When 7 <_ t <_ 9, it usually happens that ft (n) > n. The least n with ft(ri) 
1 n is 700, 9000, 90000000, for t = 7, 8, 9, respectively. 

The sequences show a strong tendency to merge. We conjecture that there is 
a finite number of sequences such that every sequence merges with one of them. 

5- THE HEURISTIC ARGUMENT 

Let t be a fixed positive integer. Consider a positive number n of k di-
gits, where k is large. For 0 £ d £ 9 and most n, about k/10 of the digits will 
be d. Thus 

A (n) * ft W + *>k/1°  = <P*)* . where p, = ( ft (d + *)) 1/10 . 

This means that ft(n) will have about k 8 log10pt digits. From Table 3, it is 
clear that this implies that ft (n) < n for most large n when l<_t<_5, and that 
ft(n) > n for most large n when 6 <_ t <_ 9. 

It is tempting to apply the same reasoning to the subsequent terms of the 
sequence. Note, however, that ft(n) cannot be just any number. About one-fifth 
of the digits of n are = ~t (mod 5) and about half of them have the same parity 
as t. Hence the highest power of 10 that divides ft(n) is usually about 10 , 
so that ft(n)- will have many more zero digits than other numbers of comparable 
size. It is plausible that, after several iterations, the fraction of digits 
which are low-order zeros will stabilize. Furthermore, it is likely that the 
significant digits will take on the ten possible values with equal frequency. 
Suppose we reach a number m of k digits. Assume there are constants a9b9 s, 
which depend on t but not on m or fe, so that (i) m has about ak low-order ze-
ros, (ii) each of the ten digits occurs about bk times as a significant digit 
of m9 and (iii) ft(m) has about sk digits, of which approximately ask are low-
order zeros. Then a + 10b = 1 and 

(2) ask * min(ord2(/t(m)) 9 ord5(ft (m))), 

where ordp(it?) denotes the ordinal of w at the prime p. By hypotheses (i) and 
(ii), we have 

ft(m) * (0 + t)ak + hk(l + t)bk ... (9 + t)bk = (tair*)k, 
where 

*t = n w +1) . 
d = 0 

Since sk « log1Qft(m) 9 we f i n d 

(3) s * a l o g 1 0 £ + b l o g 1 0 i r t . 

When t = 5 , e q u a t i o n (2) becomes 

ask « mln(8bk, ak + 2bk) 

because 8 = ord27T5. Hence as « 8b5 so 

and u ~ 8 + 10s ~ 8 + 10s ' 
Substitution in (3) gives a quadratic equation in s whose positive root is shown 
in Table 3, together with a and 2?. 

If 1 £ t £ 9 and t + 5, then (2) becomes 

ask * m±a(gak + hbk9 bk + bk)9 

where g >_ 0 and h >_ 7. Hence as « 2b, and we find 

a * n 1!^ and b x TVToS-
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Using (3) produces a quadratic equation in s whose positive root is given in 
Table 3. 

TABLE 3. Values of pt and s for 1 <_ t <_ 9 

Pt 

4 . 5 
5 .8 
6 .9 
8.0 
9.0 

10.086 
11.1 
12.2 
13.2 

lo8ioPt 

0.66 
0.76 
0.84 
0.90 
0.96 
1.0037 
1.05 
1.08 
1.12 

a 

0.30 
0.23 
0.21 
0.19 
0.49 
0.17 
0.16 
0.16 
0.15 

b 

0.070 
0.077 
0.079 
0.081 
0.051 
0.083 
0.084 
0.084 
0.085 

s 

0.46 
0.65 
0.76 
0.84 
0.83 
0.965 
1.013 
1.06 
1.09 

We may defend the third hypothesis this way: If we had assumed that ft(jn) 
had about the same number of digits as m9 i.e., that s = 1, and followed the 
remainder of the argument above, we would have concluded that the sequence forms 
an approximate geometric progression, which is the essence of (iii). There is 
no other simple assumption for the change in the number of digits from one term 
to the next. 

The few sequences we studied with 7 <_.£<_ 9 behaved roughly in accordance 
with the three hypotheses and the data in Table 3. 

In summary, for most large n, ft(n) will have many fewer digits than n for 
1 £ t <_ 5, about 0.37% more digits when t = 6, and substantially more digits 
f° r 7 £ £ £ 9. However, after several iterations, when we reach a number m9 
say, it will usually happen that ft (m) has many fewer digits than m for 1 <_ t 
<^ 6 and many more digits for 1 <_ t <_ 9, Thus if we iterate ft, the sequence 
almost certainly will diverge swiftly to infinity for 7 <_ t <_ 9, but remain 
bounded for 1 <_ t <_ 6. 

Numbers in the image of ft not only are divisible by a high power of 10, 
but all their prime factors are below 10 + t . How this property affects the 
distribution of digits in such numbers is unclear. There are only 0(logrx) of 
them up to x, where r is the number of primes up to 9 + t . 

Let 1 j£ t <^ 6, and suppose that iteration of ft from any starting number 
does lead to a cycle. How many iterations will be required to reach the cycle? 
The above heuristic argument predicts that about 

(log10log10n)/(~log10s) + 0(1) 

iterations will be needed, which is very swift convergence indeed. In the case 
t = 0, Sloane [2] has conjectured that a one-digit number will be reached in a 
bounded number of iterations. The sequence for t = 6 starting at n = 5 does 
not enter the 85-term cycle until the 121st iterate. 

The author thanks P. Erdos for suggesting the problem and A. Odlyzko for 
supplying reference [2]. He is grateful to the computer centers of the Univer-
sity of Illinois and Northern Illinois University for providing the computer 
time used in this project. 
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ON MAXIMIZING FUNCTIONS BY FIBONACCI SEARCH 

REFAEL HASSIN 
Department of Statistics, Tel Aviv University, Tel Aviv 69978 

1. INTRODUCTION 

The search for a local maximum of a function f(x) involves a sequence of 
function evaluations, i.e.s observations of the value of f(x) for a fixed value 
of x. A sequential search scheme allows us to evaluate the function at differ-
ent points, one after the other, using information from earlier evaluations to 
decide where to locate the next ones. At each stage, the smallest interval in 
which a maximum point of the function is known to lie is called the interval of 
uncertainty, 

Most of the theoretical search procedures terminate the search when either 
the interval of uncertainty is reduced to a specific size or two successive 
estimates of the maximum are closer than some predetermined value. However, an 
additional termination rule which surprisingly has not received much attention 
by theorists exists in most practical search codes, namely the number of func-
tion evaluations cannot exceed a predetermined number, which we denote by .N. 

A well-known procedure designed for a fixed number of function evaluations 
is the so-called Fibonacci search method. This method can be applied whenever 
the function is unimodal and the initial interval of undertainty is finite. In 
this paper, we propose a two-stage procedure which can be used whenever these 
requirements do not hold. In the first stage, the procedure tries to bracket 
the maximum point in a finite interval, and in the second it reduces this in-
terval using the Fibonacci search method or a variation of it developed by 
Witzgall. 

2. THE BRACKETING ALGORITHM 

A function / is unimodal on [a9b] if there exists a <_ x <. b such that f(x) 
is strictly increasing for a <_ x < ~x and strictly decreasing for x < x <_ b. It 
has been shown (Avriel and Wilde [2], Kiefer [6]) that the Fibonacci search 
method guarantees the smallest final interval of uncertainty among all methods 
requiring a fixed number of function evaluations. This method and its varia-
tions (Avriel and Wilde [3],Beamer and Wilde [4] , Kiefer [6], Oliver and Wilde 
[7], Witzgall [10]) use the following idea: 

Suppose y and z are two points in [a9b] such that y < z9 and f is unimodal, 
then 

f(y) < f(z) implies y ±~x_<_b9 
f(y) > f(%) implies a <_ x <_ z9 and 
f(y) = / 0 0 i m p l i e s y ± x ± z . 

Thus the property of unimodality makes it possible to obtain, after examin-
ing f(y) and f(z)9 a smaller new interval of uncertainty. When it cannot be 
said in advance that / is unimodel, a similar idea can be used. 

Suppose that f(x1)9 f(x2)9 and f(x3) are known such that 

(1) xx < x2 < x3 and f(x2) >̂ max{/(xx), /(x3)}, 


