holds for all polynomials p. With $p(u)=u^{n+1-d}$ it follows from (6) and (7) that

$$
C_{n}^{(d)}=L\left((u)_{d-1}(u-d+1)^{n+1-d}\right)=L\left(u^{n+1-d}\right)=B_{n+1-d}
$$

It is possible to construct a bijection φ from the partitions of \bar{n} to the d Fibonacci partitions of $\overline{n+d-1}$ in a way similar to that given in the previous section; however, this is more complicated to describe and therefore is omitted.

3. A GENERALIZATION OF THE FIBONACCI NUMBERS

The fact that F_{n+1} is the number of Fibonacci subsets of \bar{n} can be seen as the starting point to define the numbers $F_{n}^{(s)}(s \in N)$:
$F_{n+1}^{(8)}$ is defined to be the number of (A_{1}, \ldots, A_{s}) with $A_{i} \subseteq \bar{n}$ and $A_{i} \cap A_{j} \neq \emptyset$ for $i^{n+1} \neq j$. The recurrence

$$
F_{n+1}^{(s)}=s F_{n}^{(s)}+F_{n-1}^{(s)}, F_{1}^{(s)}=1, F_{2}^{(s)}=1+s
$$

can be established as follows:
First, $F_{n+1}^{(s)}$ can be expressed as the number of functions

$$
f: \bar{n} \rightarrow\left\{\varepsilon, a_{1}, \ldots, a_{s}\right\}
$$

with $f(i)=f(i+1)=a_{j}$ is impossible. If $f(n)=\varepsilon$, the contribution to $F_{n+1}^{(8)}$ is $F_{n}^{(s)}$. If $f(n)=a_{i}$, the contribution is $F_{n}^{(s)}$ minus the number of functions

$$
f: \overline{n-1} \rightarrow\left\{\varepsilon, a, \ldots, a_{s}\right\}
$$

with $f(n-1)=\alpha_{i}$. Taken all together,

$$
\begin{equation*}
F_{n+1}^{(s)}=F_{n}^{(s)}+s\left[F_{n}^{(s)}-F_{n-1}^{(s)}+F_{n-2}^{(s)}-+\cdots\right] . \tag{8}
\end{equation*}
$$

Also

$$
\begin{equation*}
F_{n+2}^{(s)}=F_{n+1}^{(s)}+s\left[F_{n+1}^{(s)}-F_{n}^{(s)}+F_{n-1}^{(s)}-+\cdots\right] . \tag{9}
\end{equation*}
$$

Adding (8) and (9) gives the result. An explicit expression is

$$
F_{n}^{(s)}=\frac{1}{\sqrt{s^{2}+4}}\left[\left(\frac{s+\sqrt{s^{2}+4}}{2}\right)^{n+1}-\left(\frac{s-\sqrt{s^{2}+4}}{2}\right)^{n+1}\right] .
$$

REFERENCES

1. L. Comtet. Advanced Combinatorics. Boston: Reidel, 1974.
2. .G.-C. Rota. "The Number of Partitions of a Set." Amer. Math. Monthly 71 (1964), reprinted in his Finite Operator Calculus. New York: Academic Press, 1975.

(continued from page 406)

Added in proof. Other explicit formulas for $P(n, s)$ were obtained in the paper "Enumeration of Permutations by Sequences," The Fibonacci Quarterly 16 (1978): 259-68. See also L. Comtet, Advanced Combinatorics (Dordrecht \& Boston: Reidel, 1974), pp. 260-61.
L. Carlitz

