holds for all polynomials p. With $p(u) = u^{n+1-d}$ it follows from (6) and (7) that $C_n^{(d)} = L((u)_{d-1}(u - d + 1)^{n+1-d}) = L(u^{n+1-d}) = B_{n+1-d}.$

It is possible to construct a bijection arphi from the partitions of \overline{n} to the d-Fibonacci partitions of n + d - 1 in a way similar to that given in the previous section; however, this is more complicated to describe and therefore is omitted.

3. A GENERALIZATION OF THE FIBONACCI NUMBERS

The fact that F_{n+1} is the number of Fibonacci subsets of \overline{n} can be seen as the starting point to define the numbers $F_n^{(s)}$ (s $\in \mathbb{N}$):

 $F_{n+1}^{(s)}$ is defined to be the number of (A_1, \ldots, A_s) with $A_i \subseteq \overline{n}$ and $A_i \cap A_j \neq \emptyset$ for $i \neq j$. The recurrence

$$F_{n+1}^{(s)} = sF_n^{(s)} + F_{n-1}^{(s)}, F_1^{(s)} = 1, F_2^{(s)} = 1 + s$$

can be established as follows:

First, $F_{n+1}^{(s)}$ can be expressed as the number of functions

$$f:\overline{n} \rightarrow \{\varepsilon, a_1, \ldots, a_s\}$$

with $f(i) = f(i + 1) = a_j$ is impossible. If $f(n) = \varepsilon$, the contribution to $F_{n+1}^{(s)}$ is $F_n^{(s)}$. If $f(n) = a_i$, the contribution is $F_n^{(s)}$ minus the number of functions

$$f: n - 1 \rightarrow \{\varepsilon, a, \ldots, a_s\}$$

with $f(n - 1) = a_i$. Taken all together, _ (B)

(8)
$$F_{n+1}^{(s)} = F_n^{(s)} + s[F_n^{(s)} - F_{n-1}^{(s)} + F_{n-2}^{(s)} - + \cdots].$$

Also

(9)
$$F_{n+2}^{(s)} = F_{n+1}^{(s)} + s[F_{n+1}^{(s)} - F_n^{(s)} + F_{n-1}^{(s)} - + \cdots].$$

Adding (8) and (9) gives the result. An explicit expression is

$$F_n^{(s)} = \frac{1}{\sqrt{s^2 + 4}} \left[\left(\frac{s + \sqrt{s^2 + 4}}{2} \right)^{n+1} - \left(\frac{s - \sqrt{s^2 + 4}}{2} \right)^{n+1} \right].$$

REFERENCES

- L. Comtet. Advanced Combinatorics. Boston: Reidel, 1974.
 .G.-C. Rota. "The Number of Partitions of a Set." Amer. Math. Monthly 71 (1964), reprinted in his Finite Operator Calculus. New York: Academic Press, 1975.

(continued from page 406)

Added in proof. Other explicit formulas for P(n, s) were obtained in the paper "Enumeration of Permutations by Sequences," The Fibonacci Quarterly 16 (1978): 259-68. See also L. Comtet, Advanced Combinatorics (Dordrecht & Boston: Reidel, 1974), pp. 260-61.

L. Carlitz
