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ALMOST ARITHMETIC SEQUENCES AND COMPLEMENTARY SYSTEMS 
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What about the sequence 3, 6, 9, 12, 15, ... ? If this is simply the arithmetic 
sequence {3n}, then its study would be essentially that of the positive integers. 
However, suppose the nth term is [ (3 + l//29~)n], or perhaps [(4 - 5//57)n] , where 
[x] means the greatest integer <. x. In these sequences, 15 is followed by 19 ra-
ther than 18. Such almost arithmetic sequences have many interesting properties 
which have been discovered only in recent years. Of special interest are comple-
mentary systems of such sequences. 

The adjective "complementary" means that every positive integer occurs exactly 
once in exactly one of a given set of sequences. Consider, for example, the three 
sequences 

(1) 1, 4, 6, 8, 10, 13, ...; 2, 5, 9, 12, 16, ...; 3, 7, 11, 14, ...; 

which can be accounted for as follows: If the positive integers that are squares, 
twice squares, or thrice squares are all arranged in increasing order, we find at 
the beginning 

(2) 1, 2, 3, 4, 8, 9, 12, 16, 18, 25, 27, 32, 36. 

Each of these numbers occupies a position in the arrangement. In particular, the 
squares 1, 4, 9, 16, 25, 36, ... occupy positions numbered 1, 4, 6, 8, 10, 13, ..., 
the first sequence in (1). This line of reasoning can be extended to show that 
the three sequences in (1) are given, respectively, by the formulas 

<"> » + [M+ [*]•lnrn *'+ W ]• <** *W]+-
The three sequences in (1) may be compared with the sequences 

1, 4, 7, 10, 13, 16, ...; 2, 5, 8, 11, 14, ...; 3, 6, 9, 12, ...; 

which form a complementary system of arithmetic sequences given by 3n + 1, 3n + 2, 
and 3n + 3. Each has a common difference, or slope, equal to 3. Similarly, the 
sequences in (1) have slopes s = 1 + 1//? + l//3~, /2s, and /3s, as shown by for-
mulas (1')- Here the similarity ends, however. Writing an = 3n + 1, we call to 
mind the very simple recurrence relation an+1 - an = 3. On the other hand, writ-
ing bn = n + [n//2] + [n//3], we find bn + 1 - bn £ s for all n. Instead, bn+1 - bn 
takes values 1, 2, and 3, depending on n. Moreover, CLn + 1 - an = 6 for all n, 
whereas bn+2 - bn takes values 4, 5, and 6. 

We are now in a position to state the purpose of this note: first, to intro-
duce a definition of "almost "arithmetic" that covers sequences as in (l),and then 
to present some theorems about almost arithmetic sequences and complementary sys-
tems . 

One more thought before defining the general almost arithmetic sequence {an} 
is that there should be a real number u such that an must stay close to the arith-
metic sequence nu. Specifically, an - nu should stay bounded as n goes through 
the positive integers, and this could be used as the defining property for "almost 
arithmetic" sequences. However, this property depends on the existence of a real 
number u, and since the an are positive Integers, a definition which refers only 
to positive integers is much to be preferred. From such a definition, we should 
be able to determine the number u. The following definition meets these require-
ments. 
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Suppose I <_ k are nonnegative integers and {an} is a strictly increasing se-
quence of positive integers satisfying 

(3) 0 <L am + n - am - an + t <_ fe, for all m9 n > 1, 

The sequence {an} is almost arithmetic* or, more specifically, (fe, I)-arithmetic. 

It is fairly easy to check that for any positive real numbers a19 a2, . . . , afe 
and 3i5 625 •••» 3/, the sequence with nth term 

(4) an = {a1n} + [a2n] + ••• + [afen] 

is (fe, 0)-arithmetic, and the sequence with nth term 

(5) an = [axn + g j + [a2n + 02] + •- + [afen + gfe] 

is (fef, £.)-arithmetic for some £ and some fcf >_ fe. 
For example9 the sequence {3n} is (0, 0)-arithmetic; {3n+ 1} is (0, 1)-arith-

metic, and {n + [n//2~] + [n//3~]} is (2, 0)-arithmetic. 
As we shall soon see, there are many almost arithmetic sequences {an} for 

which no formula in closed form for an is known. Nevertheless, our first theorem 
will show that every almost arithmetic sequence {an} must have a slope u3 and an 
must stay close to nu, 
Thzotiem 1 »• If {an} is a (fe, £.)-arithmetic sequence, then the number u = lim — , 
hereinafter referred to as the slope of {an}, exists, and 

(6) an <_ nu + t <_ an + fe, for n = 1, 2, ... . 

P/LOO£: Let e > 0, and let AZ be so large that 

(I k - l \ 
i^9 777 J 

< e. 

for any n > m9 we have n = qm + r where q = [n/m] and 0 <_ r < m. By (3), 

am - I < an - an_m < am - I + fe 
and 

£ < aw_m - an.2ffl < CLm - I + fe 

and finally am - I £ a„_(<7-1)m - ar <. aOT - £. + fe. 
Adding these: 

q(am - 1) £ an - ar <_ q(am -I + fe). 
Now adding ar - qam and dividing by n yields 

^ _ _ ^ < ^ _ <¥hn_ < q_ , _ n Or_ 
n n — n n — n n ' 

When this is added to the easily verified 

n — n m — 9 

one obtains 
ar - am ar - am l ar - am - Iq an am q(k -I) + ax e < < < — - — < 

n n m — n — n m — n 

fe - L ar &r 
< + — < £ + — . 

m n n 
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As n -»• °° we see that ft <_ e, so that \—k as a Cauchy sequence, converges. 
n m 

Now as a first step in an induction argument, 

an - I < a2n - an<an - l + k. 
Assume for arbitrary j > 3 that 

U ~ 2) (an - £ ) < . ^(j-i)n- an <• U ' 2) (an - I + fe) . 

Adding this with an - £ <. a^n ~ a(j-i)n -̂ an - £ + fe gives 

(j - D(an - £) <L aJn - aM <. (j - l)(an - I + • fe), 

which concludes the induction argument. This set of inequalities is equivalent to 

0an- U - Dl <. a>jn < jan + U - D(fe - £) -. 
Dividing by jn, 

— Qu — n n Q 
an _ Ĵ  
n n 

Since lim —:— = u, we have 
j-*°°  Jn 

3 -
0 

an 
n 

±i 

_ i 
n n — — n wv 

and (6) follows. 

Theorem 1 should be compared with similar results in Polya and Szego [7, pp. 
23-24]. 

Note the contrast between the defining inequality (3) and Theorem 1. The for-
mer is entirely combinatorial, whereas the notion of slope is analytic. Specifi-
cally, when I is the least integer such that 

am+n - °>m " an + X >. 0, for all m9 n >, 1, 
and if fe is the least integer such that 

am+n -• ̂ m - an + •£ <. fe, for all m9 n _> 1, 
then k counts the extent to which the sequence {an -£} deviates from the rule 

that is, from being an arithmetic sequence. On the other hand, the slope u gives 
the average growth rate of {an}. With this analytic notion in mind, we may pre-
dict that if {an} has slope u and {bn} slope i?, then the composite sequences iabr) 
and {ban} will have slope uv. Or, if the given sequences are disjoint, we can com-
bine them in increasing order, thus getting a sequence with slope (w""1 +. v'1)~1

9 
the harmonic mean of u and v. Then returning to a combinatorial attitude, we may 
ask about the bounding numbers fe and I. for these new sequences. Our first theorem 
of the sort just suggested shows how to make almost arithmetic sequences from a 
given real u 2. 1. 

TkzofLQjn 2: If u >. 1 is a real number and {an} is an increasing sequence of posi-
tive integers satisfying 0 < _ n u - a n + £ < . f e for 0 <. I <_ fe and for n = 1, 2, ..., 
then {an} is a (3fe, fe + £)-arithmetic sequence with slope u. 

VKOOfji Subtracting 0. <. (m+n)u - am+n + L <_k from 0 <. mu - am + £ <_ fe gives 
-fe••<. <2/n + n - am - nw £ fe. This implies nu <. am+n - am + k <_nu + 2k. Bounds for 
nu come from 0 <_ nu - an + I £ fe, namely an - I <_nu <_ an - £ + fe . Thus 

• <*n - £ <. am + n - a m + k < _ a n - l + 3'fe, 
or equivalently, 

0 <. aw + n - aw - an + I + k'<. 3fe, 
as required. 
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As an example, let an ~ 2ft if ft is prime and 2ft + 1 otherwise. Then fe = I = 1 
in Theorem 2, and {an} is a (3, 2)-arithmetic sequence. Actually, {an} is also a 
(2, 2)-arithmetic sequence, which is saying more. This example shows that the fe 
and I in Theorem 2 need not be the least values for which (3) holds. This same 
observation holds for the theorems that follow. 

Consider next an = 10ft + 2 and bn = 10 + 5 for ft=0, 1, 2,.... We combine 
these to form the sequence {cn} given by 2, 5, 12, 15, 22, 25, ..., and ask if this 
is an almost arithmetic sequence. If so, what numbers fe, t describe the maximal 
spread which cn has away from 5ft? The question leads to the following theorem 
about disjoint unions of almost arithmetic sequences. 

TkzoKom 3; Suppose {an} is a (fe, t)-arithmetic sequence and {bn) is a (fe', •£')-
arithmetic sequence, disjoint from {an} in the sense that bn £ <xm for all m and 
ft. Let {en} be the union of {an) and {bn}> Then {on) is a (3C, £)-arithmetic se-
quence for some JC and £ (given in the proof). If {an) has slope u and {&«} has 
slope v, then {cn} has slope (W1 + i?"*1)"1. 

Pfiooj: Let ft be a positive integer. 

C&6e J. Suppose <?n = a^ for some #. Let # = Nu/v. By Theorem 1, 

OT - fe + £ £ aN £ xv + £ and iv - fe' + £' £ fc* £ it; + £', i = 1, 2 

The inequality iv + t* £ xv. - fe + £ shows that bi <. aN whenever 

i <.'ar + ( £ - £ ' - fe)A>. 

Similarly, 2?i >. aN for 
£ >. x + (£ - £•' + fef)/y. 

Thus, the number of bi which are £ aN i s x + 6, where 

(£ - £r - fe)/y < 6 < ( £ - £ ' + fe')M 
so that 

ft = (Vat £ a#) + 0bi ± aN) = N + Nu/v + 6. 
Multiplying by w = uv/(u + f) gives Wu = (ft - <5)w. Now, subs t i tu t ing t h i s and 
a# = cn into #u - fe + £ £ % £ Ww + £, we obtain 

(ft - 6)W - fe + £ £ On .< (ft - 6)W + lB 

COM2. 2. Suppose c n = &ff for some N. As in Case 1, there ex i s t s 6 ' 
sa t i s fy ing (£ ' - I - fe')/w <. 6 f <. (£ ' - I + fe)/w such that 

(ft - 5')w - fef + V £ c?n £ (ft - 6')tf + £ ' . 

To accommodate both cases, let 

- Sw 
- 6'w, 

and then let 

_ f JB" if £" i s an integer , f „, 
£ ~ { [ £ " ] + 1 otherwise a n d X [X J* 

Now nw+£r £ cn £ ftW+3C', so tha t 0 £ nw-on + 3Cf £ 3Cf - £ f . By Theorem 2, {cn} 
i s (JC, £ ) - a r i t hme t i c , where X = 3(3Cf - £ ' ) and £ = 2JCf - £ f . 

The theorem j u s t proved has an in t e res t ing appl icat ion to complementary sys-
tems, as follows. 
Thzoim 4: Suppose ialn}9 {a2 nK • . . * { a n J are almost ar i thmetic sequences tha t 

&in 
comprise a complementary system. Let Ui = lim — — for ̂  = 1, 2, ...,772. Then 

n-*-oo ft 
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PfLOO^: As members of a complementary system, ia
ln} and {a2n} are disjoint. 

By Theorem 3, their union is an almost arithmetic sequence with slope W satisfy-
ing l/w = l/u1 + l/u2. Assume for arbitrary k <_ m - 1 that the union 

ialn} u{a2n} u ... u {akn} 

is almost arithmetic with slope u satisfying 1/u = l/u1 + ••• + 1/u^. Theorem 3 
applies. By mathematical induction on k, we have l/v = 1/U-L + ••• + l/um9 where 
V is the slope of the union of all the given sequences, that is, 1. 

In case m ~ 2, the identity 
m 

i = £ Uui 
i = l 

is the subject of the famous Beatty Problem [1] of 1926. An extensive bibliography 
on results stemming from Beattyfs Problem and other research on sequences of the 
form {[un]} is given in Stolarsky [8]; the interested reader should also consult 
Fraenkel, Mushkin, and Tassa [3]. A generalization of Beatty?s Problem by Skolem 
[7] is that sequences {[un]} and {[vn]} 9 where u and V are positive irrationals, 
are disjoint if and only if a/u + b/v = 1 for some integers a and h. Skolem1 s 
generalization suggests a still more general question, which we state here hoping 
that an answer will someday by found: What criteria exist for disjointness of two 
sequences of the form (4), for k >_ 2? 

We turn next to composites of almost arithmetic sequences. 

TkdOKom 5: Composites of almost arithmetic sequences are almost arithmetic. Spe-
cifically, if {an} is (fe, £)-arithmetic with slope u and {bn} is (fe', t^-arith-
metic with slope v9 then the sequence {on} defined by on = ba„ is (bi + £?&_i + 3fc' 
- 2tr, bi + fc')-arithmetic with slope uv. (Here b0 = 0.) 

PfLOOJ: We must show that 

(7) 0 <om+n - cm - cn +bt + fe' 
and 
(8) om+n - om - an + bt + k' <_bt - bk-i + 3fe' - 2l>. 
Now 

0 < bam+an - bam - b an + V b y ( 3 ) 

1 bam + n+ i - bam - ban + V s i n c e am + an <. a m + n + £ 
^ &am + n +bt + fe' - £ ' ) • - Z?am - £a„ + £ ' by ( 3 ) . 

Th i s p roves ( 7 ) . To prove ( 8 ) , 

bam + n ~ bam - ban + b t + k' < bam + an + k + l ' b am - ban + b t + fe ' 

<. bam + an + £ f e - £ + fe' - £ ' - Z?am - &a„ + 2? £ + fe f 

< bam + ^aM + fe' - £ ' + 2>fe-£ + k' - V 

- ^am - &a„ + &£ + fe' 
= Z?t 4- 2?fe_̂  + 3fe' - 2£', 

as required. 

For slopes we have an ^ un and bn ^ vn, where the symbol ̂  abbreviates the re-
lationship indicated in (6). Consequently, ban ^ van ^ vun. 

To illustrate Theorem 5,letan= [/in] and bn = [/3n]. Each provides a (1, 0)-
arithmetic sequence. The composite ban = [/!f[/2n]] has slope /6~ and is (4, 1)-
arithmetic. The same is true for abn = [/2~[/3n]]. 
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TkdOKm 61 The complement of a (fe, £)-arithmetic sequence {an} having slope u> 1 
f[3(u + fe)l fu+2fe - £-|\ . ̂  . • . , , 

1 S a \L u - 1—_r u - 1 J-arithmetic sequence wxth slope u/(u- 1). 

VKOO£} The complement of {an} is the increasing sequence {a%} of all positive 
integers missing from {an}. By (6) we can write 

an - nu + 6, where £ - fe £ 6 = S(n) £ Z. 

Then the inequality at < an can be expressed as i < (a* - 6)/w, and the greatest 
such i is [(a* - 6)/u]. Now a* = n + / (a§), where /(#) is the number of terms at 
satisfying a^ < x. Thus a* = n + [(a* - 6)/w], and 

n + (a* - &)/u - 1 1 a* £ n + (a* - 6)/w. 
This readily leads to 

& <_ un - (u - I)a* £ u + 6, 
so that 

0 £ T- - a* + r- < — -9 
U - 1 n U - 1 — U - 1 

and we conclude, by the method of proof of Theorem 2, that {a*} is an almost arith-
metic sequence of the required sort. 

Theorem_6 shows, for example, that the set of all positive integers not of 
the form [/7n+/J] + [/Tn-/3] = an forms an almost arithmetic sequence. Suppose 
that, given a sequence such as {an}, we remove a subsequence which is almost arith-
metic, for example {a[/jn]}, Will the remaining terms of {an} still form an almost 
arithmetic sequence? We call such remaining terms the relative complement (of 
{a[/yn]} in {an})s and have the following strengthening of Theorem 6. 

Th^OKQjn 7» The relative complement of an almost arithmetic subsequence of an al-
most arithmetic sequence is almost arithmetic. 

VKOO^- Suppose {ani } is an almost arithmetic subsequence of an almost arith-
metic sequence {an}. By Theorem 1, there exist positive real u and v and nonnega-
tive integers L, k9 £', fe' such that 

(9) an. £ ntu + I £ an. + fe, I £ fe, i = 1, 2, 
and 
(10) ani £ iv + V £ ani + fe', V £ fe', i = 1, 2, ... . 

Dividing by u in (9) and (10) leads to 

I fe ani .v V ani fe' I kf aWi tV if an 
— < V— H < — 

u u — u — u u — u u — " u u so that 
n / • V -, V±k~ I , fe + fe' 
— u u ~ u 

Thus, by Theorem 2, the sequence {m} is almost arithmetic. By Theorem 7, the 
complementary sequence {n*}, consisting of all positive integers which are not 
terms of {n^}, is almost arithmetic. By Theorem 6, the sequence {anj}, which con-
sists of all the an

% s missing from {ani}, is almost arithmetic, as was to be 
proved. 

CotiottaJiy to the, VKOO^ O{ lhe,QKQX(\ It Suppose {ani} is an almost arithmetic 
subsequence of an almost arithmetic sequence {an}• Then the sequence {ni} is al-
most arithmetic. 
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We now return to the complementary system 

(1) 1, 4, 6, 8, 10, 13, ...; 2, 5, 9, 12, 16, ...; 3, 7, 11, 14, ... . 

Writing these sequences as {an} 9 {bn}9 {on}9 we list all the positive integers as 
follows: 

^ 1 » ^ 1 J ^ 1 J ^ 2 9 *^2» ^3» ^2» ^if J ^3» ^5> ^3J ••• • 

Removing all the Ci leaves 
(1") al9 bl9 a2$ b2, a3, a^9 b$9 a5 
Now let. {an} ®.{<2n} and {bn} ® {cn} represent, respectively, the number of the 
position of an and bn in (1")» counting from the left. These two sequences form 
a complementary system of almost arithmetic sequences. In fact, for comparison 
with formulas (lf), one may easily check that 

{an}@{on} = f n + [ ^ ] } : = {1> 3> 5> 6» 8> 10> n > 13> 15> 17» 18> 20> -••> 
(fcn) ©{<?«} - {n + [/2n] = {2, 4, 7, 9, 12, 14, 16, 19, 21, .. . } . 

We define ® in general as follows: For disjoint strictly increasing sequences 
{an} and {on} of positive integers, let {dn} be the sequence obtained by writing 
all the ai and a* in increasing order and then removing all the o^ . Then 

ian}®{on} 
is the sequence whose nth term is the position of an in the sequence {dn}. 

Even if {an} and {on} are not disjoint, we define a second operation © as fol-
lows: Construct a sequence {en} by putting on at position <?n for all n and filling 
all the remaining positions with the ai and a^ written in increasing order. Then 

ian} © {cn} 
is the sequence whose nth term is the position of an in the sequence {en}» 

One relationship between ® and © is indicated by the identity 

{{an}Q{on}) ®{cn} - {an}. 
Also, 

{{an}Q{cn})Q{on} - {a»} 
in case {an} and {on} are disjoint. 

Both operations ® and © can be used on any given complementary system of se-
quences {aln}9 {a2n}9 ..., {amn}9 m J> 2, to produce new complementary systems whose 
sequences remain almost arithmetic in case the original sequences were so, as we 
shall see in Theorems 8 and 9. Specifically, 

{aln}®{amn}9 ..., {am_lin} ® {amn} 
is a complementary system of m - 1 sequences, and for any strictly increasing se-
quence {on} of positive integers, the collection 

ialn} © {on}9 ..., {amn} © {cn}9 

together with {cn} itself, is a complementary system of m + 1 sequences. 
What about slopes and formulas for the nth terms of sequences arising from © 

and © ? We have the following two theorems. 
Th&QKQm St Suppose {an} and {bn} are disjoint almost arithemtic sequences hav-
ing slopes u and v9 respectively. Let on = bn + n - 1, then 

{an} ® {bn} = {2an © e*} 
is an almost arithmetic sequence having slope u - u/v. 
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PKqo£t Let (ltbi<.ri) denote the number of bt that are <. n. Using the formula 
CF(n) = n + p(ri) on p. 457 of Lambek and Moser [6], we find 

n + 0bi £ n) = nth positive integer not 
in the sequence {bn + n - 1}, 

so that 
(#2?i £ an) = -an + anth term of the complement of {bn + n - 1}, 

whence the nth term of {an} ® {bn}9 which is clearly an - (#&£ £ a n ) , must equal 
Since {cn} is almost arithmetic with slope y + 1, {<?*} is almost arith-

metic with slope 1+1/t?, by Theorem 6. Then {otn} is almost arithmetic with slope 
u(l+l/t>)9 by Theorem 5. Thus, {2an - o% } is almost arithmetic with slope 2u -
u(l + 1/v). 

Tk&QSiQm 9; Suppose {an} and {bn} are almost arithmetic sequences having slopes u 
and v, respectively. Then 

{a„} 0 {*>»} = {&*,} 
is an almost arithmetic sequence with slope uv/(v- 1). 

Vh.QO{< By definition, the nth term of {an} © {bn} is the anth positive inte-
ger not one of the bit as claimed. As a composite of a complement, this is an 
almost arithmetic sequence with slope uv/(v - 1), much as in the proof of Theorem 
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SUMS OF THE INVERSES OF BINOMIAL COEFFICIENTS 

ANDREW M. ROCKETT 
C. W. Post Center of Long Island University, Greenvalef NY 11548 

In this note, we discuss several sums of inverses of binomial coefficients. 
We evaluate these sums by application of a fundamental recurrence relation in much 
the same manner as sums of binomial coefficients may be treated. As an applica-
tion, certain iterated integrals of the logarithm are evaluated. 
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