If we fix i, we may write $m = hp_i^{\alpha_i}$ with h > 1 and $(h, p_i) = 1$. The question will then be settled if we show that there are no carries when adding $p_i^{\alpha_i}$ to $m - p_i^{\alpha_i} =$ then be setted if we show that there are no carries when adding p_i to $m - p_i - (h - 1)p_i^{\alpha_i}$ in base p. Since the only nonzero digit in the representation of $p_i^{\alpha_i}$ to base $p_i^{\alpha_i}$ is the 1 that multiplies p_i^{α} , we need consider only the digit that multiplies $p_i^{\alpha_i}$ in the base p_i representation of $(h - 1)p_i^{\alpha_i}$. Indeed, it is clear that we have a carry if and only if $h - 1 = qp_i + (p_i - 1)$ for some integer q. But this is so if and only if $h = (q+1)p_i$, and this contradicts the fact that $(h, p_i) = 1$. Thus,

$$P_i \not \left(\begin{array}{c} m \\ p_i^{\alpha_i} \end{array} \right)$$

for $1 \leq i \leq r$, and the proof is complete.

REFERENCES

- 1. N. J. Fine. "Binomial Coefficients Modulo a Prime." Amer. Math. Monthly 14 (1947):589-92.
- 2. Martin Gardner. "Mathematical Games." Scientific American 215 (Dec. 1966): 128-32.
- 3. S. H. L. Kung. "Parity Triangles of Pascal's Triangle." The Fibonacci Quarterly 14 (1976):54.
- 4. C. T. Long. Elementary Introduction to the Theory of Numbers. 2nd ed. Lexington: D. C. Heath & Co., 1972.
- 5. E. Lucas. "Théorie des functions numériques simplement périodiques." Amer. J. Math. 1 (1878):184-240.

ON THE NUMBER OF FIBONACCI PARTITIONS OF A SET

HELMUT PRODINGER

Institut für Mathematische Logik und Formale Sprachen, 1040 Wien, Austria

1. PARTITIONS OF \overline{n} IN FIBONACCI SETS

Let \overline{n} : = {1, 2, ..., n}. It is well known [1] that the number of sets $A \subseteq \overline{n}$, with

(1)
$$i, j \in A, i \neq j \text{ implies } |i - j| \geq 2,$$

is the Fibonacci number F_{n+1} . $(F_0 = F_1 = 1, F_{n+2} = F_{n+1} + F_n)$ A set $A \subseteq \overline{n}$ with the property (1) will be called a Fibonacci set.

A partition of \overline{n} is a family of disjoint (nonempty) subsets of \overline{n} whose union is \overline{n} . The number of partitions of \overline{n} is B_n , the *n*th Bell number [2].

In this section the number C_n of partitions of \overline{n} in Fibonacci subsets will be considered. There exists an interesting connection with B_n .

<u>Theorem 1</u>: $C_n = B_{n-1}$.

Proof: This will be proved by arguments analogous to Rota's in [2]. First, the number of functions $f: \overline{n} \to U$ (U has u elements) with $f(i) \neq f(i + 1)$ for all i determined: for f(1) there are u possibilities; for f(2) there are u - 1 possibilities; for f(3) there are u-1 possibilities, and so on. The desired number of functions is $u(u - 1)^{n-1}$.

These functions are partitioned with respect to their kernels. (Note that exactly those kernels appear which are Fibonacci sets!)

(2)
$$\sum (u)_{N(\pi)} = u(n-1)^{n-1},$$

the sum is extended over all kernels $\pi,$ and $\texttt{N}(\pi)$ denotes the number of distinct subsets of $\pi.$

Now let L be the functional defined by $(u)_n \rightarrow 1$ for all n. Then, from (2),

(3)
$$L\left(\sum (u)_{N(\pi)}\right) = C_n = L(u(u-1)^{n-1}).$$

In [2] it is proved that $L(u \cdot p(u - 1)) = L(p(u))$ holds for all polynomials p. With $p(u) = u^{n-1}$,

$$C_n = L(u(u - 1)^{n-1}) = L(u^{n-1}) = B_{n-1}.$$

(The last equality is the essential result of [2].)

At this time it is legitimate to ask of a natural bijection φ from the partitions of \overline{n} to the Fibonacci partitions of $\overline{n+1}$. φ and φ^{-1} are given by the following algorithms (due to F. J. Urbanek).

Algorithm for φ :

A1. n + 1 is adjoined to the given partition in a new class.

A2. Do Step A3 for all classes except the one of n + 1.

A3. Run through the class in decreasing order. If with the considered number i, i + 1 is also in the same class, give i in the class of n + 1.

Example: 1 2 3 5 4 6 7 8 9
$$\rightarrow$$
 1 2 3 5 4 6 7 8 9 10 \rightarrow 1 3 5 4 6 7 8 9 2 10
 \rightarrow 1 3 5 4 7 8 9 2 6 10 \rightarrow 1 3 5 4 7 9 2 6 8 10.

Algorithm for φ^{-1} : The number n + 1 is erased; the other numbers in this class are to be distributed: If i + 1 has its place and i is to be distributed, give i in the class of i + 1.

Example: $138 | 24 | 6 | 579 \rightarrow 1378 | 24 | 56$.

It is not difficult to see that φ and φ^{-1} are inverse and that only φ^{-1} preserves the partial order of partitions (with respect to refinement).

2. A GENERALIZATION: *d*-FIBONACCI SETS

A *d*-Fibonacci set $A \subseteq \overline{n}$ has the property

 $i, j \in A, i \neq j$ implies $|i - j| \ge d$.

Let $C_n^{(d)}$ be the number of *d*-Fibonacci partitions. $(C_n^{(2)} = C_n, C_n^{(1)} = B_n.)$

Theorem 2: $C_n^{(d)} = B_{n+1-d}$.

Proof: First the number of functions $f: \overline{n} \to U$ with

$$|\{f(i), f(i+1), \dots, f(i+d-1)\}| = d$$
 for all i

is considered. By the same argument as in Section 1, this number is

 $(u)_{d-1}(u - d + 1)^{n+1-d}$.

Again

(4)

(5)
$$\sum (u)_{N(\pi)} = (u)_{d-1}(u-d+1)^{n+1-d},$$

where the summation ranges over all *d*-Fibonacci partitions of \overline{n} . Applying the functional *L* on (5) yields

(6)
$$C_n^{(d)} = L((u)_{d-1}(u-k+1)^{n+1-d}).$$

As in [2],

(7)

$$L((u)_{d-1}p(u - d + 1)) = L(p(u))$$

holds for all polynomials p. With $p(u) = u^{n+1-d}$ it follows from (6) and (7) that $C_n^{(d)} = L((u)_{d-1}(u - d + 1)^{n+1-d}) = L(u^{n+1-d}) = B_{n+1-d}.$

It is possible to construct a bijection arphi from the partitions of \overline{n} to the d-Fibonacci partitions of n + d - 1 in a way similar to that given in the previous section; however, this is more complicated to describe and therefore is omitted.

3. A GENERALIZATION OF THE FIBONACCI NUMBERS

The fact that F_{n+1} is the number of Fibonacci subsets of \overline{n} can be seen as the starting point to define the numbers $F_n^{(s)}$ (s $\in \mathbb{N}$):

 $F_{n+1}^{(s)}$ is defined to be the number of (A_1, \ldots, A_s) with $A_i \subseteq \overline{n}$ and $A_i \cap A_j \neq \emptyset$ for $i \neq j$. The recurrence

$$F_{n+1}^{(s)} = sF_n^{(s)} + F_{n-1}^{(s)}, F_1^{(s)} = 1, F_2^{(s)} = 1 + s$$

can be established as follows:

First, $F_{n+1}^{(s)}$ can be expressed as the number of functions

$$f:\overline{n} \rightarrow \{\varepsilon, a_1, \ldots, a_s\}$$

with $f(i) = f(i + 1) = a_j$ is impossible. If $f(n) = \varepsilon$, the contribution to $F_{n+1}^{(s)}$ is $F_n^{(s)}$. If $f(n) = a_i$, the contribution is $F_n^{(s)}$ minus the number of functions

$$f: n - 1 \rightarrow \{\varepsilon, a, \ldots, a_s\}$$

with $f(n - 1) = a_i$. Taken all together, _ (B)

(8)
$$F_{n+1}^{(s)} = F_n^{(s)} + s[F_n^{(s)} - F_{n-1}^{(s)} + F_{n-2}^{(s)} - + \cdots].$$

Also

(9)
$$F_{n+2}^{(s)} = F_{n+1}^{(s)} + s[F_{n+1}^{(s)} - F_n^{(s)} + F_{n-1}^{(s)} - + \cdots].$$

Adding (8) and (9) gives the result. An explicit expression is

$$F_n^{(s)} = \frac{1}{\sqrt{s^2 + 4}} \left[\left(\frac{s + \sqrt{s^2 + 4}}{2} \right)^{n+1} - \left(\frac{s - \sqrt{s^2 + 4}}{2} \right)^{n+1} \right].$$

REFERENCES

- L. Comtet. Advanced Combinatorics. Boston: Reidel, 1974.
 .G.-C. Rota. "The Number of Partitions of a Set." Amer. Math. Monthly 71 (1964), reprinted in his Finite Operator Calculus. New York: Academic Press, 1975.

(continued from page 406)

Added in proof. Other explicit formulas for P(n, s) were obtained in the paper "Enumeration of Permutations by Sequences," The Fibonacci Quarterly 16 (1978): 259-68. See also L. Comtet, Advanced Combinatorics (Dordrecht & Boston: Reidel, 1974), pp. 260-61.

L. Carlitz
