If we fix i, we may write $m=h p_{i}^{\alpha_{i}}$ with $h>1$ and $\left(h, p_{i}\right)=1$. The question will then be settled if we show that there are no carries when adding $p_{i}^{\alpha_{i}}$ to $m-p_{i}^{\alpha_{i}}=$ ($h-1) p_{i}^{\alpha_{i}}$ in base p. Since the only nonzero digit in the representation of $p_{i}^{\alpha_{i}}$ to base $p_{i}{ }_{i}$ is the 1 that multiplies p_{i}^{α}, we need consider only the digit that multiplies $p_{i}^{\alpha_{i}}$ in the base p_{i} representation of (h-1) $p_{i}^{\alpha_{i}}$. Indeed, it is clear that we have a carry if and only if $h-1=q p_{i}+\left(p_{i}-1\right)$ for some integer q. But this is so if and only if $h=(q+1) p_{i}$, and this contradicts the fact that $\left(h, p_{i}\right)=1$. Thus,

$$
p_{i} \not \backslash\binom{m}{p_{i}^{\alpha_{i}}}
$$

for $1 \leq i \leq r$, and the proof is complete.

REFERENCES

1. N. J. Fine. "Binomial Coefficients Modulo a Prime." Amer. Math. Monthly 14 (1947):589-92.
2. Martin Gardner. "Mathematical Games." Scientific American 215 (Dec. 1966): 128-32.
3. S. H. L. Kung. "Parity Triangles of Pascal's Triangle." The Fibonacci Quarterly 14 (1976):54.
4. C. T. Long. Elementary Introduction to the Theory of Numbers. 2nd ed. Lexington: D. C. Heath \& Co., 1972.
5. E. Lucas. "Théorie des functions numériques simplement périodiques." Amer. J. Math. 1 (1878):184-240.

ON THE NUMBER OF FIBONACCI PARTITIONS OF A SET

HELMUT PRODINGER

Institut für Mathematische Logik und Formale Sprachen, 1040 Wien, Austria

1. PARTITIONS OF \bar{n} IN FIBONACCI SETS

Let $\bar{n}:=\{1,2, \ldots, n\}$. It is well known [1] that the number of sets $A \subseteq \bar{n}$, with

$$
\begin{equation*}
i, j \in A, i \neq j \text { imp1ies }|i-j| \geq 2, \tag{1}
\end{equation*}
$$

is the Fibonacci number $F_{n+1} . \quad\left(F_{0}=F_{1}=1, F_{n+2}=F_{n+1}+F_{n}\right)$
A set $A \subseteq \bar{n}$ with the property (1) will be called a Fibonacci set.
A partition of \bar{n} is a family of disjoint (nonempty) subsets of \bar{n} whose union is \bar{n}. The number of partitions of \bar{n} is B_{n}, the nth Bell number [2].

In this section the number C_{n} of partitions of \bar{n} in Fibonacci subsets will be considered. There exists an interesting connection with B_{n}.
Theorem 1: $\quad C_{n}=B_{n-1}$.
Proo6: This will be proved by arguments analogous to Rota's in [2]. First, the number of functions $f: \bar{n} \rightarrow U$ (U has u elements) with $f(i) \neq f(i+1)$ for all i is determined: for $f(1)$ there are u possibilities; for $f(2)$ there are $u-1$ possibilities; for $f(3)$ there are $u-1$ possibilities, and so on. The desired number of functions is $u(u-1)^{n-1}$.

These functions are partitioned with respect to their kernels. (Note that exactly those kernels appear which are Fibonacci sets!)

$$
\begin{equation*}
\sum(u)_{N(\pi)}=u(n-1)^{n-1}, \tag{2}
\end{equation*}
$$

the sum is extended over all kernels π, and $N(\pi)$ denotes the number of distinct subsets of π.

Now let L be the functional defined by $(u)_{n} \rightarrow 1$ for all n. Then, from (2),

$$
\begin{equation*}
L\left(\sum(u)_{N(\pi)}\right)=C_{n}=L\left(u(u-1)^{n-1}\right) \tag{3}
\end{equation*}
$$

In [2] it is proved that $L(u \cdot p(u-1))=L(p(u))$ holds for all polynomials p. With $p(u)=u^{n-1}$,

$$
C_{n}=L\left(u(u-1)^{n-1}\right)=L\left(u^{n-1}\right)=B_{n-1}
$$

(The last equality is the essential result of [2].)
At this time it is legitimate to ask of a natural bijection φ from the partitions of \bar{n} to the Fibonacci partitions of $\overline{n+1}, \varphi$ and φ^{-1} are given by the following algorithms (due to F. J. Urbanek).
Algorithm for φ :
A1. $n+1$ is adjoined to the given partition in a new class.
A2. Do Step A3 for all classes except the one of $n+1$.
A3. Run through the class in decreasing order. If with the considered number i, $i+1$ is also in the same class, give i in the class of $n+1$.
 $\rightarrow 135|47| 89|2610 \rightarrow 135| 47|9| 26810$.
Algorithm for φ^{-1} : The number $n+1$ is erased; the other numbers in this class are to be distributed: If $i+1$ has its place and i is to be distributed, give i in the class of $i+1$.

Example: $138|24| 6|579 \rightarrow 1378| 24 \mid 56$.
It is not difficult to see that φ and φ^{-1} are inverse and that only φ^{-1} preserves the partial order of partitions (with respect to refinement).
2. A GENERALIZATION: d-FIBONACCI SETS

Ad-Fibonacci set $A \subseteq \bar{n}$ has the property

$$
\begin{equation*}
i, j \in A, i \neq j \text { imp1ies }|i-j| \geq d \tag{4}
\end{equation*}
$$

Let $C_{n}^{(d)}$ be the number of d-Fibonacci partitions. $\left(C_{n}^{(2)}=C_{n}, C_{n}^{(1)}=B_{n}.\right)$
Theorem 2: $C_{n}^{(d)}=B_{n+1-d}$.
Proof: First the number of functions $f: \bar{n} \rightarrow U$ with
$|\{f(i), f(i+1), \ldots, f(i+d-1)\}|=d$ for all i
is considered. By the same argument as in Section 1 , this number is

$$
(u)_{d-1}(u-d+1)^{n+1-d} .
$$

Again

$$
\begin{equation*}
\sum(u)_{N(\pi)}=(u)_{d-1}(u-d+1)^{n+1-d} \tag{5}
\end{equation*}
$$

where the summation ranges over all d-Fibonacci partitions of \bar{n}. Applying the functional L on (5) yields

$$
\begin{equation*}
C_{n}^{(d}=L\left((u)_{d-1}(u-k+1)^{n+1-d}\right) . \tag{6}
\end{equation*}
$$

As in [2],

$$
\begin{equation*}
L\left((u)_{d-1} p(u-d+1)\right)=L(p(u)) \tag{7}
\end{equation*}
$$

holds for all polynomials p. With $p(u)=u^{n+1-d}$ it follows from (6) and (7) that

$$
C_{n}^{(d)}=L\left((u)_{d-1}(u-d+1)^{n+1-d}\right)=L\left(u^{n+1-d}\right)=B_{n+1-d}
$$

It is possible to construct a bijection φ from the partitions of \bar{n} to the d Fibonacci partitions of $\overline{n+d-1}$ in a way similar to that given in the previous section; however, this is more complicated to describe and therefore is omitted.

3. A GENERALIZATION OF THE FIBONACCI NUMBERS

The fact that F_{n+1} is the number of Fibonacci subsets of \bar{n} can be seen as the starting point to define the numbers $F_{n}^{(s)}(s \in N)$:
$F_{n+1}^{(8)}$ is defined to be the number of (A_{1}, \ldots, A_{s}) with $A_{i} \subseteq \bar{n}$ and $A_{i} \cap A_{j} \neq \emptyset$ for $i^{n+1} \neq j$. The recurrence

$$
F_{n+1}^{(s)}=s F_{n}^{(s)}+F_{n-1}^{(s)}, F_{1}^{(s)}=1, F_{2}^{(s)}=1+s
$$

can be established as follows:
First, $F_{n+1}^{(s)}$ can be expressed as the number of functions

$$
f: \bar{n} \rightarrow\left\{\varepsilon, a_{1}, \ldots, a_{s}\right\}
$$

with $f(i)=f(i+1)=a_{j}$ is impossible. If $f(n)=\varepsilon$, the contribution to $F_{n+1}^{(8)}$ is $F_{n}^{(s)}$. If $f(n)=a_{i}$, the contribution is $F_{n}^{(s)}$ minus the number of functions

$$
f: \overline{n-1} \rightarrow\left\{\varepsilon, a, \ldots, a_{s}\right\}
$$

with $f(n-1)=\alpha_{i}$. Taken all together,

$$
\begin{equation*}
F_{n+1}^{(s)}=F_{n}^{(s)}+s\left[F_{n}^{(s)}-F_{n-1}^{(s)}+F_{n-2}^{(s)}-+\cdots\right] . \tag{8}
\end{equation*}
$$

Also

$$
\begin{equation*}
F_{n+2}^{(s)}=F_{n+1}^{(s)}+s\left[F_{n+1}^{(s)}-F_{n}^{(s)}+F_{n-1}^{(s)}-+\cdots\right] \tag{9}
\end{equation*}
$$

Adding (8) and (9) gives the result. An explicit expression is

$$
F_{n}^{(s)}=\frac{1}{\sqrt{s^{2}+4}}\left[\left(\frac{s+\sqrt{s^{2}+4}}{2}\right)^{n+1}-\left(\frac{s-\sqrt{s^{2}+4}}{2}\right)^{n+1}\right] .
$$

REFERENCES

1. L. Comtet. Advanced Combinatorics. Boston: Reidel, 1974.
2. .G.-C. Rota. "The Number of Partitions of a Set." Amer. Math. Monthly 71 (1964), reprinted in his Finite Operator Calculus. New York: Academic Press, 1975.

(continued from page 406)

Added in proof. Other explicit formulas for $P(n, s)$ were obtained in the paper "Enumeration of Permutations by Sequences," The Fibonacci Quarterly 16 (1978): 259-68. See also L. Comtet, Advanced Combinatorics (Dordrecht \& Boston: Reidel, 1974), pp. 260-61.
L. Carlitz

