A NOTE ON FIBONACCI NUMBERS

L. CARLITZ

Duke University, Durham, N. C.
We shall employ the notation

$$
\begin{aligned}
& u_{0}=0, u_{1}=1, u_{n+1}=u_{n}+u_{n-1} \quad(n \geq 1) \\
& v_{0}=2, \quad v_{1}=1, \quad v_{n+1}=v_{n}+v_{n-1} \quad(n \geq 1)
\end{aligned}
$$

Thus

$$
\begin{equation*}
u_{\mathrm{n}}=\frac{\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}}{\alpha-\beta}, \mathrm{v}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}} \tag{1}
\end{equation*}
$$

where

$$
\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}, \alpha+\beta=1, \alpha \beta=-1 .
$$

The first few values of u_{n}, v_{n} follow.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
u_{n}	0	1	1	2	3	5	8	13	21	34	55	89	144
v_{n}	2	1	3	4	7	11	18	29	47	76	123	199	322

It follows easily from the definition of (1) that

$$
\begin{align*}
& u_{n}=u_{n-k+1} u_{k}+u_{n-k} u_{k-1} \quad(n \geq k \geq 1) \tag{2}\\
& v_{n}=u_{n-k+1} v_{k}+u_{n-k} v_{k-1} \quad(n \geq k \geq 1)
\end{align*}
$$

It is an immediate consequence of (1) that
(6)

$$
\begin{gather*}
\left.\mathrm{u}_{\mathrm{k}}\right|^{\mathrm{u}_{\mathrm{mk}}} \tag{4}\\
\left.\mathrm{v}_{\mathrm{k}}\right|^{\mathrm{u}_{2 \mathrm{mk}}} \tag{5}\\
\left.\mathrm{v}_{\mathrm{k}}\right|^{\mathrm{v}}(2 \mathrm{~m}-1) \mathrm{k}
\end{gather*}
$$

*Supported in part by National Science Foundation Grant G16485.
where m and k are arbitrary positive integers. It is perhaps not sofamiliar that, conversely,
$(4)^{\prime}$

$$
\mathrm{u}_{\mathrm{k}} \mid \mathrm{u}_{\mathrm{n}} \Longrightarrow \mathrm{n}=\mathrm{mk} \quad(\mathrm{k}>2)
$$

$(5)^{\prime}$
$u_{k} \mid u_{n} \Longrightarrow n=2 m k \quad(k>1)$,
$(6){ }^{\prime}$
$\mathrm{v}_{\mathrm{k}} \mid \mathrm{v}_{\mathrm{n}} \Longrightarrow \mathrm{n}=(2 \mathrm{~m}-1) \mathrm{k}(\mathrm{k}>1)$.
These results can be proved rapidly by means of (1) and some simple results about algebraic numbers. If we put

$$
\begin{equation*}
\mathrm{n}=\mathrm{mk}+\mathrm{r} \quad(0 \leq \mathrm{r}<\mathrm{k}) \tag{7}
\end{equation*}
$$

then

$$
\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}=\alpha^{\mathrm{r}}\left(\alpha^{\mathrm{mk}}-\beta^{\mathrm{mk}}\right)+\beta^{\mathrm{mk}}\left(\alpha^{\mathrm{r}}-\beta^{\mathrm{r}}\right)
$$

so that

$$
u_{\mathrm{n}}=\alpha^{\mathrm{r}} \mathrm{u}_{\mathrm{mk}}+\beta^{\mathrm{mk}} \mathrm{u}_{\mathrm{r}}
$$

If $u_{k} \mid u_{n}$ it therefore follows that $u_{k} \mid \beta^{m k} u_{r}$. Since β is a unit of the field $R(\sqrt{ } 5), u_{k} \mid u_{r}$, which requires $r=0$. This proves (4)'.

Similarly if

$$
\mathrm{n}=2 \mathrm{mk}+\mathrm{r} \quad(0 \leq \mathrm{r}<2 \mathrm{k})
$$

then

$$
u_{\mathrm{n}}=\alpha^{\mathrm{r}} \mathrm{u}_{2 \mathrm{mk}}+\beta^{2 m k_{\mathrm{r}}}
$$

Hence if $v_{k} \mid u_{n}$ it follows that $v_{k} \mid u_{r}$. If then $r>0$ we must have $r>k$ and the identity

$$
(\alpha-\beta) \mathrm{u}_{\mathrm{r}}=\alpha^{\mathrm{r}-\mathrm{k}_{\mathrm{v}_{\mathrm{k}}}-\beta \mathrm{v}_{\mathrm{r}-\mathrm{k}}}
$$

gives $\mathrm{v}_{\mathrm{k}} \mid \mathrm{v}_{\mathrm{r}-\mathrm{k}}$, which is impossible. The proof of (6) ${ }^{\text {r }}$ is similar.

If we prefer, we can prove (4)', (5)', (6)' without reference to algebraic numbers. For example if $u_{k} \mid u_{n}$, then (2) implies $u_{k} \mid u_{n-k} u_{k-1}$. Since u_{k} and u_{k-1} are relatively prime we have $u_{k} \mid u_{n-k}$. Continuing in this way we get $u_{k} \mid u_{r}$, where r is defined by (7). The proof is now completed as above. In the same way we can prove (5)' and (6)'.

In view of the relation

$$
\begin{equation*}
u_{2 n}=u_{n} v_{n} \tag{8}
\end{equation*}
$$

it is natural to ask for the general solution of the equation

$$
\begin{equation*}
u_{n}=u_{m} v_{k}(m>2, k>1) \tag{9}
\end{equation*}
$$

It is easily verified, using (1), that (9) can be replaced by

$$
\begin{equation*}
u_{\mathrm{n}}=u_{\mathrm{m}+\mathrm{k}}+(-1)^{\mathrm{k}} \mathrm{u}_{\mathrm{m}-\mathrm{k}} \quad(\mathrm{~m} \geq \mathrm{k}) \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{n}=u_{m+k}-(-1)^{k} u_{k-m} \quad(k>m) \tag{11}
\end{equation*}
$$

Now the equation

$$
\begin{equation*}
u_{r}=u_{s}+u_{t} \quad(s>t>1) \tag{12}
\end{equation*}
$$

is satisfied only when $r-1=s=t+1$. Indeed if $1<t<s-1$, then

$$
u_{s}+u_{t}<u_{s}+u_{s-1}=u_{s+1}
$$

so that (12) is impossible; if $t=s-1$, then clearly $r=s+1$. If $t=1$ in (12) we have the additional solution $r=4, \mathrm{~s}=3$.

Returning to (10) and (11) we first dispose of the case $m-k=1$. For k even (10) will be satisfied only if $\mathrm{m}+\mathrm{k}=3$, which implies $\mathrm{k}=1$; for k odd we get $\mathrm{n}=2, \mathrm{~m}+\mathrm{k}=3$ or $\mathrm{n}=3, \mathrm{~m}+\mathrm{k}=4$, which is impossible. Equation (11) with $k-m=1$ is disposed of in the same way.

We may therefore assume in (10) and (11) that $|\mathrm{m}-\mathrm{k}|>1$. Then if k is even, it is evident from the remark concerning (12) that (10) is impossible. If k is odd, we have

$$
u_{m+k}=u_{n}+u_{m-k}
$$

so that $k=1, m=n$. As for (11), if m is odd we get

$$
u_{n}=u_{m+k}+u_{k-m}
$$

which is impossible. However, if m is even, we get

$$
u_{m+k}=u_{n}+u_{k-m}
$$

so that $\mathrm{m}+\mathrm{k}=\mathrm{n}+1=\mathrm{k}-\mathrm{m}+2$; this requires $\mathrm{m}=1$, $\mathrm{k}=\mathrm{n}$.
This completes the proof of
Theorem 1. The equation

$$
\mathrm{u}_{\mathrm{n}}=\mathrm{u}_{\mathrm{m}} \mathrm{v}_{\mathrm{k}} \quad(\mathrm{~m}>2, \mathrm{k}>1)
$$

has only the solutions $n=2 \mathrm{~m}=2 \mathrm{k}$.
The last part of the above proof suggests consideration of the equation

$$
\begin{equation*}
u_{n}=v_{k} \quad(k>1) \tag{13}
\end{equation*}
$$

Since (13) is equivalent to

$$
u_{n}=u_{k+1}+u_{k-1}
$$

it follows at once that the only solution of (13) is $n=4, k=2$.
The equation

$$
\begin{equation*}
u_{n}=v_{m} v_{k} \quad(m \geq k>1) \tag{14}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
u_{\mathrm{n}}=\mathrm{v}_{\mathrm{m}+\mathrm{k}}+(-1)^{\mathrm{k}^{2}} \mathrm{v}_{\mathrm{m}-\mathrm{k}} \tag{15}
\end{equation*}
$$

If k is even it is clear that $n>m+k$; indeed since $v_{m+k}=u_{m+k+1}+u_{m+k-1}$ we must have $n>m+k+1$. Then (15) implies

$$
u_{m+k+2} \leq u_{m+k+1}+u_{m+k-1}+v_{m-k}
$$

which simplifies to

$$
\begin{equation*}
u_{\mathrm{m}+\mathrm{k}-2} \leq \mathrm{v}_{\mathrm{m}-\mathrm{k}} \tag{16}
\end{equation*}
$$

If $\mathrm{m}=\mathrm{k}$, (16) holds only when $\mathrm{m}=2$; however this does notlead to a solution of (14). If $m>k$, (16) may be written as

$$
u_{m+k-2} \leq u_{m-k+1}+u_{m-k-1}<u_{m-k}
$$

which holds only when $\mathrm{m}=4, \mathrm{k}=2$.
If k is odd, (15) becomes

$$
\begin{equation*}
u_{n}+v_{m-k}=v_{m+k} \tag{17}
\end{equation*}
$$

If $\mathrm{m}=\mathrm{k}$ this reduces to

$$
u_{n}+2=u_{2 k+1}+u_{2 k-1}
$$

which implies $2 \mathrm{k}-1=3, \mathrm{k}=2$. If $\mathrm{m}=\mathrm{k}+1$ (17) gives

$$
u_{n}+1=u_{2 k+2}+u_{2 k}
$$

which is clearly impossible. For $m>k+1$ we get

$$
u_{m+k+1}+u_{m+k-1} \geq u_{n}+2 u_{m-k}
$$

so that $n \leq m+k+1$. Since

$$
u_{m+k}+2 u_{m-k}<u_{m+k+1}+u_{m+k-1}
$$

we must have $\mathrm{n}=\mathrm{m}+\mathrm{k}+1$. Hence (17) becomes

$$
\mathrm{v}_{\mathrm{m}-\mathrm{k}}=\mathrm{u}_{\mathrm{m}+\mathrm{k}-1} ;
$$

[Feb.
as we have seen above, this implies

$$
m-k=2, m+k-1=4
$$

so that we do not get a solution.
We may state
Theorem 2. The equation

$$
\mathrm{u}_{\mathrm{n}}=\mathrm{v}_{\mathrm{m}} \mathrm{v}_{\mathrm{k}} \quad(\mathrm{~m} \geq \mathrm{k}>1)
$$

has the unique solution $\mathrm{n}=8, \mathrm{~m}=4, \mathrm{k}=2$.
It is clear from (4)' that the equation

$$
\begin{equation*}
u_{n}=c u_{k} \quad(k>2) \tag{18}
\end{equation*}
$$

where c is a fixed integer >1 is solvable only when $\mathrm{k} \mid \mathrm{n}$. Moreover the number of solutions is finite. Indeed (18) implies

$$
\mathrm{cu}_{\mathrm{k}} \geq \mathrm{u}_{2 \mathrm{k}} \geq \mathrm{u}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}, \mathrm{c} \geq \mathrm{v}_{\mathrm{k}}
$$

moreover if $\mathrm{n}=\mathrm{rk}$ then for fixed k, r is uniquely determined by (18).
This observation suggests two questions: For what values of c is (18) solvable and, secondly, can the number of solutions exceed one? In connection with the first question consider the equation

$$
\begin{equation*}
u_{n}=2 u_{k} \quad(k>2) \tag{19}
\end{equation*}
$$

Since for $n>3$

$$
2 u_{n-2}<u_{n}=2 u_{n-2}+u_{n-3}<2 u_{n-1}
$$

we get

$$
u_{n-2}<u_{k}<u_{n-1}
$$

which is clearly impossible. Similarly, since for $n>4$

$$
3 u_{n-3}<u_{n}=3 u_{n-3}+2 u_{n-4}<3 u_{n-2}
$$

it follows that the equation
(20)

$$
u_{n}=3 u_{k} \quad(k>2)
$$

has no solution.
Let us consider the equation

$$
\begin{equation*}
u_{n}=u_{m} u_{k} \quad(m \geq k>2) \tag{21}
\end{equation*}
$$

We take

$$
u_{n}=u_{n-m+1} u_{m}+u_{n-m} u_{m-1}
$$

so that

$$
u_{n-m+1} u_{m}<u_{n}<u_{n-m+2} u_{m},
$$

provided $\mathrm{n}>\mathrm{m}$. Then clearly (21) is impossible.
For the equation

$$
\begin{equation*}
\mathrm{v}_{\mathrm{n}}=\mathrm{u}_{\mathrm{m}} \mathrm{v}_{\mathrm{k}}(\mathrm{~m}>2, \mathrm{k}>1) \tag{22}
\end{equation*}
$$

we use

$$
v_{n}=u_{m} v_{n-m+1}+u_{m-1} v_{n-m}
$$

Then

$$
u_{m} v_{n-m+1}<v_{n}<u_{m} v_{n-m+2}
$$

so that (22) is impossible.
This proves
Theorem 3. Each of the equations (21), (22) possesses no solutions.

Consider next the equation

$$
\begin{equation*}
\mathrm{v}_{\mathrm{n}}=\mathrm{v}_{\mathrm{m}} \mathrm{v}_{\mathrm{k}} \quad(\mathrm{~m} \geq \mathrm{k}>1) \tag{23}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\mathrm{v}_{\mathrm{n}}=\mathrm{v}_{\mathrm{m}+\mathrm{k}}+(-1)^{\mathrm{k}} \mathrm{v}_{\mathrm{m}-\mathrm{k}} \tag{24}
\end{equation*}
$$

For k even, (24) is obviously impossible. For k odd we may write

$$
\mathrm{v}_{\mathrm{m}+\mathrm{k}}=\mathrm{v}_{\mathrm{n}}+\mathrm{v}_{\mathrm{m}-\mathrm{k}}
$$

which requires $\mathrm{m}+\mathrm{k}=\mathrm{n}+1=\mathrm{m}-\mathrm{k}+2$, so that $\mathrm{k}=1$. This proves
Theorem 4. The equation (23) possesses no solutions.
The remaining type of equation is

$$
\begin{equation*}
v_{n}=u_{m} u_{k} \quad(m \geq k>2) \tag{25}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
5 \mathrm{v}_{\mathrm{n}}=\mathrm{v}_{\mathrm{m}+\mathrm{k}}+(-1)^{\mathrm{k}} \mathrm{v}_{\mathrm{m}-\mathrm{k}} \tag{26}
\end{equation*}
$$

Clearly $\mathrm{n}<\mathrm{m}+\mathrm{k}$. Then since

$$
\mathrm{v}_{\mathrm{m}+\mathrm{k}}=5 \mathrm{v}_{\mathrm{m}+\mathrm{k}-4}+3 \mathrm{v}_{\mathrm{m}+\mathrm{k}-5}
$$

(26) implies

$$
\begin{equation*}
5 \mathrm{v}_{\mathrm{n}}=5 \mathrm{v}_{\mathrm{m}+\mathrm{k}-4}+3 \mathrm{v}_{\mathrm{m}+\mathrm{k}-5}+(-1)^{\mathrm{k}} \mathrm{v}_{\mathrm{m}-\mathrm{k}} \tag{27}
\end{equation*}
$$

Consequently $n \geq m+k-3$, while the right member of (27) is less than

$$
5 \mathrm{v}_{\mathrm{m}+\mathrm{k}-4}+4 \mathrm{v}_{\mathrm{m}+\mathrm{k}-5}<5 \mathrm{v}_{\mathrm{m}+\mathrm{k}-3} .
$$

This evidently proves

Theorem 5. The equation (25) possesses no solution.
Next we discuss the equations
(29)

$$
\begin{align*}
& u_{m}^{2}+u_{n}^{2}=u_{k}^{2} \quad(0<m \leq n) \tag{28}\\
& v_{m}^{2}+v_{n}^{2}=v_{k}^{2} \quad(0 \leq m \leq n)
\end{align*}
$$

We shall require the following
Lemma. The following inequalities hold.

$$
\begin{align*}
& \frac{u_{n+1}}{u_{n}} \geq \frac{3}{2} \quad(n \geq 2) \tag{30}\\
& \frac{v_{n+1}}{v_{n}} \geq \frac{3}{2} \quad(n \geq 3) \tag{31}
\end{align*}
$$

Proof. Since $u_{n} \leq 2 u_{n-1}$ for $n \geq 2$, we have

$$
\frac{u_{n+1}}{u_{n}}=1+\frac{u_{n-1}}{u_{n}} \geq \frac{3}{2}
$$

The proof of (31) is exactly the same.
Returning to (28) it is evident that

$$
u_{\mathrm{n}}^{2}<\mathrm{u}_{\mathrm{k}}^{2}<2 \mathrm{u}_{\mathrm{n}}^{2}
$$

so that

$$
u_{n}<u_{k}<u_{n} \sqrt{2}
$$

Then $\mathrm{k}>\mathrm{n}$ and by the lemma

$$
u_{\mathrm{k}} \geq \mathrm{u}_{\mathrm{n}+1} \geq \frac{3}{2} \mathrm{u}_{\mathrm{n}}
$$

Since $\sqrt{2}<3 / 2$, we have a contradiction. The same argument applies to (29). The lemma requires that $\mathrm{n} \geq 2$ or 3 but there is of course no difficulty about
the excluded values. This proves
Theorem 6. Each of the equations (28), (29), possesses no solutions. More generally, each of the equations

$$
\begin{aligned}
& u_{m}^{r}+u_{n}^{r}=u_{k}^{r} \quad(0<m \leq n) \\
& v_{m}^{r}+v_{n}^{r}=v_{k}^{r} \quad(0 \leq m \leq n)
\end{aligned}
$$

where $r \geq 2$ has no solutions.
Remark. The impossibility of (29) can also be inferred rapidly from the easily proved fact that no v_{n} is divisible by 5 . Indeed since

$$
\alpha^{5} \equiv \beta^{5} \equiv \frac{1}{2} \quad(\bmod \sqrt{5})
$$

it follows that

$$
\mathrm{v}_{\mathrm{n}+5}=\alpha^{\mathrm{n}+5}+\beta^{\mathrm{n}+5} \equiv \frac{1}{2}\left(\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}\right)=\frac{1}{2} \mathrm{v}_{\mathrm{n}} \quad(\bmod \sqrt{5})
$$

so that $\mathrm{v}_{\mathrm{n}+5} \equiv \mathrm{v}_{\mathrm{m}}(\bmod \sqrt{5})$. Moreover none of $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}$ is divisible by 5 . The mixed equation

$$
\begin{equation*}
\mathrm{v}_{\mathrm{m}}^{2}+\mathrm{v}_{\mathrm{n}}^{2}=\mathrm{u}_{\mathrm{k}}^{2} \quad(0 \leq \mathrm{m} \leq \mathrm{n}) \tag{32}
\end{equation*}
$$

has the obvious solution $m=2, \mathrm{n}=3, \mathrm{k}=5$; the equation

$$
\begin{equation*}
u_{\mathrm{m}}^{2}+\mathrm{v}_{\mathrm{n}}^{2}=\mathrm{u}_{\mathrm{k}}^{2} \quad(\mathrm{~m}>0) \tag{33}
\end{equation*}
$$

has the solution $\mathrm{m}=4, \mathrm{n}=3, \mathrm{k}=5$.
Clearly (32) implies

$$
\mathrm{v}_{\mathrm{n}}<\mathrm{u}_{\mathrm{k}}<\mathrm{v}_{\mathrm{n}} \sqrt{2}
$$

This inequality is not sufficiently sharp to show that (32) has no solutions although it does suffice for the equation

$$
\mathrm{v}_{\mathrm{m}}^{\mathrm{r}}+\mathrm{v}_{\mathrm{n}}^{\mathrm{r}}=\mathrm{u}_{\mathrm{k}}^{\mathrm{r}}
$$

with r sufficiently large.
However (32) is equivalent to

$$
\begin{equation*}
\mathrm{v}_{2 \mathrm{~m}}+(-1)^{\mathrm{m}} 2+\mathrm{v}_{2 \mathrm{n}}+(-1)^{\mathrm{n}} 2=\frac{1}{5}\left\{\mathrm{v}_{2 \mathrm{k}}-(-1)^{\mathrm{k}} 2\right\} \tag{34}
\end{equation*}
$$

If $m+n \equiv 1(\bmod 2)$, this reduces to

$$
\mathrm{v}_{2 \mathrm{~m}}=\mathrm{v}_{2 \mathrm{n}}=\frac{1}{5}\left\{\mathrm{v}_{2 \mathrm{k}}-(-1)^{\mathrm{k}} 2\right\}
$$

There is no loss in generality in assuming $k \geq 5$. Then since

$$
\mathrm{v}_{2 \mathrm{k}}=5 \mathrm{v}_{2 \mathrm{k}-4}+3 \mathrm{v}_{2 \mathrm{k}-5}
$$

we get

$$
\mathrm{v}_{2 \mathrm{~m}}+\mathrm{v}_{2 \mathrm{n}}=\mathrm{v}_{2 \mathrm{k}-4}+\frac{1}{5}\left\{3 \mathrm{v}_{2 \mathrm{k}-5}-(-1)^{\mathrm{k}} 2\right\} .
$$

Since $m<n$ and

$$
\frac{1}{5}\left\{3 \mathrm{v}_{2 \mathrm{k}-5}-(-1)^{\mathrm{k}} 2\right\}<\mathrm{v}_{2 \mathrm{k}-5}
$$

we must have $2 \mathrm{n}=2 \mathrm{k}-4$ and

$$
5 \mathrm{v}_{2 \mathrm{~m}}=3 \mathrm{v}_{2 \mathrm{k}-5}-(-1)^{\mathrm{k}} 2=6 \mathrm{v}_{2 \mathrm{k}-7}+3 \mathrm{v}_{2 \mathrm{k}-8}-(-1)^{\mathrm{k}} 2
$$

It is therefore necessary that $2 \mathrm{~m}=2 \mathrm{k}-6$ and we get

$$
5 \mathrm{v}_{2 \mathrm{~m}}=6 \mathrm{v}_{2 \mathrm{~m}-1}+3 \mathrm{v}_{2 \mathrm{~m}-2}+(-1)^{\mathrm{m}_{2}}
$$

which simplifies to

$$
\mathrm{v}_{2 \mathrm{~m}-4}=(-1)^{\mathrm{m}} 2
$$

Hence $\mathrm{m}=2, \mathrm{k}=5, \mathrm{n}=3$ (a solution of (22)).
Next if $m \equiv \mathrm{n}(\bmod 2)$, (34) reduces to

$$
\mathrm{v}_{2 \mathrm{~m}}+\mathrm{v}_{2 \mathrm{n}}+(-1)^{\mathrm{n}} 4=\frac{1}{5}\left\{\mathrm{v}_{2 \mathrm{k}}-(-1)^{\mathrm{k}} 2\right\}
$$

and as above we get

$$
\begin{equation*}
\mathrm{v}_{2 \mathrm{~m}}+\mathrm{v}_{2 \mathrm{n}}+(-1)^{\mathrm{m}} 4=\mathrm{v}_{2 \mathrm{k}-4}+\frac{1}{5}\left\{3 \mathrm{v}_{2 \mathrm{k}-5}-(-1)^{\mathrm{k}} 2\right\} \tag{35}
\end{equation*}
$$

It is necessary that $2 \mathrm{n}=2 \mathrm{k}-4$, so that (35) reduces to

$$
\begin{equation*}
5 \mathrm{v}_{2 \mathrm{~m}}+(-1)^{\mathrm{m}} 20=3 \mathrm{v}_{2 \mathrm{k}-5}-(-1)^{\mathrm{k}} 2 \tag{36}
\end{equation*}
$$

Clearly $2 \mathrm{~m} \leq 2 \mathrm{k}-6$. If $2 \mathrm{~m}<2 \mathrm{k}-6$ we get

$$
3 \mathrm{v}_{2 \mathrm{k}-5}-(-1)^{\mathrm{k}} 2 \leq 5 \mathrm{v}_{2 \mathrm{k}-7}+(-1)^{\mathrm{m}} 20
$$

or

$$
\mathrm{v}_{2 \mathrm{k}-6}+2 \mathrm{v}_{2 \mathrm{k}-8} \leq{(-1)^{\mathrm{m}} 20+(-1)^{\mathrm{k}} 2, ~, ~}^{\mathrm{m}}
$$

which is not possible. Thus $2 \mathrm{~m}=2 \mathrm{k}-6$ and (36) becomes

$$
5 \mathrm{v}_{2 \mathrm{~m}}+(-1)^{\mathrm{m}} 20=3 \mathrm{v}_{2 \mathrm{~m}+1}+(-1)^{\mathrm{m}} 2
$$

This reduces to

$$
\mathrm{v}_{2 \mathrm{~m}-4}=(-1)^{\mathrm{m}-1} 18
$$

which is satisfied by $m=5$. Then $k=8, n=6$ but this does not lead to a solution of (32).

This completes the proof of
Theorem 7. The equation

$$
\mathrm{v}_{\mathrm{m}}^{2}+\mathrm{v}_{\mathrm{n}}^{2}=\mathrm{u}_{\mathrm{k}}^{2} \quad(0 \leq \mathrm{m} \leq \mathrm{n})
$$

has the unique solution $\mathrm{m}=2, \mathrm{n}=3, \mathrm{k}=5$.
The equation

$$
\begin{equation*}
u_{\mathrm{m}}^{2}+\mathrm{v}_{\mathrm{n}}^{2}=\mathrm{u}_{\mathrm{k}}^{2} \quad(\mathrm{~m}>0) \tag{37}
\end{equation*}
$$

can be treated in a less tedious manner. Suppose first that $\mathrm{v}_{\mathrm{n}} \leqslant \mathrm{u}_{\mathrm{m}}$. Then (37) implies

$$
u_{\mathrm{m}}^{2}<\mathrm{u}_{\mathrm{k}}^{2}<2 \mathrm{u}_{\mathrm{m}}^{2}
$$

and as we have seen above this is impossible. Next let $u_{m}<v_{n}$. If $k>n+2$ then

$$
\begin{array}{r}
u_{k}^{2} \geq u_{n+3}^{2}=\left(2 u_{n+1}+u_{n}\right)^{2}=2\left(u_{n+1}+u_{n-1}\right)^{2}+2 u_{n+1}^{2}+2 u_{n+1} u_{n-2} \\
+u_{n}^{2}-u_{n-1}^{2}>2 v_{n}^{2}
\end{array}
$$

so that (37) is certainly not satisfied. Since $k>n+1$ it follows that $k=n+2$. Thus (37) becomes

$$
\begin{equation*}
u_{m}^{2}=u_{n+2}^{2}-v_{n}^{2}=3\left(u_{n}^{2}-u_{n-1}^{2}\right) \tag{38}
\end{equation*}
$$

as is easily verified. If $m>n+2$ then

$$
u_{m}^{2} \geq u_{n+2}^{2}=\left(2 u_{n}+u_{n-1}\right)^{2}>3\left(u_{n}^{2}-u_{n-1}^{2}\right)
$$

contradicting (38). Since for $n>3$

$$
3\left(u_{n}^{2}-u_{n-1}^{2}\right)-u_{n}^{2}=2 u_{n}^{2}-3 u_{n-1}^{2}>\frac{9}{2} u_{n-1}^{2}-3 u_{n-1}^{2}>0
$$

it follows that $\mathrm{m}>\mathrm{n}$. Thus $\mathrm{m}=\mathrm{n}+1$ and (38) becomes

$$
u_{n+1}^{2}=3\left(u_{n}^{2}-u_{n-1}^{2}\right)
$$

This implies $u_{n}+u_{n-1}=3, n=3$, which leads to the solution $n=3, m=4$, $\mathrm{k}=5$ of (37). As for the excluded values $\mathrm{n}=1,2$ it is obvious that they do not furnish a solution. This proves

Theorem 8. The equation

$$
u_{\mathrm{m}}^{2}+\mathrm{v}_{\mathrm{n}}^{2}=\mathrm{u}_{\mathrm{k}}^{2} \quad(\mathrm{~m}>0)
$$

has the unique solution $\mathrm{m}=4, \mathrm{n}=3, \mathrm{k}=5$ 。

The Fibonacci Association invites Educational Institutions to apply for Academic Membership in the Association. The minimum subscription fee is $\$ 25$ annually. (Academic Members will receive two copies of each issue and will have their names listed in the Journal.)

REQUEST

The Fibonacci Bibliographical Research Center desires that any reader finding a Fibonacci reference, send a card giving the reference and abrief description of the contents. Please forward all such information to:

```
Fibonacci Bibliographical Research Center,
    Mathematics Department,
    San Jose State College,
        San Jose, California
```


NOTICE TO ALL SUBSCRIBERS?!!

Please notify the Managing Editor AT ONCE of any address change. The Post Office Department, rather than forwarding magazines mailed third class, sends them directly to the dead-letter office. Unless the addressee specifically requests the Fibonacci Quarterly be forwarded at first class rates to the new address, he will not receive it. (This will usually cost about 30 cents for firstclass postage.) If possible, please notify us AT LEAST THREE WEEKS PRIOR to publication dates: February 15, April 15, October 15, and December 15.

