A NEW PROOF FOR AN OLD PROPERTY

Since $c \leq m$ and m and n are positive, either $a \leq 0$ or $b \leq 0$. Suppose $a \leq 0$ and set k = -a. Then

$$bn = c + km$$

and, by Lemma 1,

(1) $F_{bn} = F_{c+km} = F_{c-1}F_{km} + F_{c}F_{km+1}$.

Now $d | F_n, d | F_m$ and, by Lemma 3, $F_n | F_{bn}$ and $F_m | F_{km}$. Therefore, $d | F_{bn}, d | F_{km}$ and it follows from (1) that $d | F_{km+1} F_c$. But (d, F_{km+1}) = 1 since $d | F_{km}$ and by Lemma 2, $(F_{km}, F_{km+1}) = 1$. Therefore, $d | F_c$. But, as seen above, $F_c | d$. Hence, since both are positive,

$$(\mathbf{F}_{\mathbf{m}},\mathbf{F}_{\mathbf{n}}) = \mathbf{d} = \mathbf{F}_{\mathbf{c}} = \mathbf{F}_{(\mathbf{m},\mathbf{n})}$$

and the proof is complete.

REFERENCES

- 1. N. N. Vorob'ev, <u>Fibonacci Numbers</u>, Blaisdell Publishing Company, New York and London, 1961.
- 2. G. H. Hardy and E. M. Wright, <u>The Theory of Numbers</u>, Oxford University Press, London, 1954.

SOME CORRECTIONS TO VOLUME 1, NO. 3

<u>Page 19:</u> On the third line from the bottom, put in > for = to read

$$(5 + \beta^{n^{X+1}}) >.$$

<u>Page 24:</u> Line 5 should read, instead of " $a_{\alpha} + 2\beta = 0$," $a_{\alpha} + 2b = 0$.

<u>Page 30:</u> On line 4, change " e_i " to " e_1 ". On line 18, change "unit" to "limit."