so that

$$
\sum_{n=1}^{M} \operatorname{Tan}^{-1} \frac{1}{F_{2 n+1}}+\operatorname{Tan}^{-1} \frac{1}{3}=2 \sum_{n=1}^{M} \operatorname{Tan}^{-1} \frac{1}{L_{2 n}}+\operatorname{Tan}^{-1} \frac{1}{L_{2 M+2}}
$$

The limit on the left tends to $\operatorname{Tan}^{-1} 1+\operatorname{Tan}^{-1} 1 / 3=\operatorname{Tan}^{-1} 2$ and the right-hand side tends to this same limit and since $\operatorname{Tan}^{-1} 1 / L_{2 M+2} \rightarrow 0$, then Theorem 6:

$$
\sum_{n=1}^{\infty} \operatorname{Tan}^{-1} \frac{1}{\mathrm{~L}_{2 n}}=\operatorname{Tan}^{-1} \frac{\sqrt{5}-1}{2}=\frac{1}{2} \operatorname{Tan}^{-1} 2
$$

Compare with Theorem 5 in Part IV.
We shall continue this interesting discussion in the next issue.

CORRECTIONS FOR VOLUME 1, NO. 2

Page 45: In the tenth line up from the bottom, the subscripts on the Fibonacci numbers should be reversed.

Page 47: Replace "Lamda" by "Lambda" in the title.

Page 52: In line 6, replace (R^{n}) with $\lambda\left(\mathrm{R}^{\mathrm{n}}\right)$.
In line 12, the author's name is Jekuthiel Ginsburg.

Page 55: In problem $\mathrm{H}-18$, part a, replace $=$ by \doteqdot.
Page 57: In E2, replace $\frac{a}{d}, \frac{b}{d}$ with $\left(\frac{a}{d}, \frac{b}{d}\right)$.
Page 58: Add three dots after the 4 on the last line.

Page 60: The title "Letters to the Editor" was omitted from Fibonacci Formulas, and, in that article, the "Correct Formula" due to the late Jekuthiel Ginsburg is $\mathrm{F}_{\mathrm{n}+2}^{3}-3 \mathrm{~F}_{\mathrm{h}}^{3}+\mathrm{F}_{\mathrm{n}-2}^{3}=3 \mathrm{~F}_{3 \mathrm{n}}$.

Page 68: The right side of identity xix should read

$$
\frac{1}{2}\left(F_{n+1}^{2}-F_{n} F_{n-1}-1\right)
$$

and in identity xx , the subscript $\mathrm{n}-1$ should be $\mathrm{n}-\mathrm{i}$.
The correct page number in reference 1 is 98 .

Page 75: Insert three dots after β^{2}, in line 15.

Page 80: In the last line, replace $p N$ by $p \mid N$ and $p\left(2 \cdot 3 \cdot 5 \cdots p_{n}\right)$ by $\mathrm{p} \mid\left(2 \cdot 3 \cdot 5 \cdots p_{\mathrm{n}}\right)$.

Page 81: Replace $T_{n}+1$ by T_{n+1} in the left side of the first displayed equation.

Page 86: In $B-12, L_{n+1}=\left(a_{r s}\right), \quad a_{34}=i=\sqrt{-1}$ instead of zero.
Page 87: Change the equations in problem B-16 to read

$$
\begin{aligned}
R & =\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right) \\
R^{n} & =\left(\begin{array}{lrr}
F_{n-1}^{2} & F_{n-1} F_{n} & F_{n}^{2} \\
2 F_{n-1} F_{n} & F_{n+1}^{2}-F_{n-1} F_{n} & 2 F_{n} F_{n+1} \\
F_{n}^{2} & F_{n} F_{n+1} & F_{n+1}^{2}
\end{array}\right)
\end{aligned}
$$

See also solution in this issue.

Page 88: See the last written line for notational error due to exclamation point punctuation.

