STREMGTHEMED INEQUALITES FOR FIBONACOI AMI LUCAS MUMBERS

$$
\begin{gathered}
\text { DOV JARDEN } \\
\text { Jerusalem, Israel }
\end{gathered}
$$

In a paper entitled "On the Greatest Primitive Divisors of Fibonacci and Lucas Numbers" (henceforth referred to as P), published in The Fibonacci Quarterly, Volume 1, Number 3, pages 15-20, I have proved for the Fibonacci numbers F_{n} and the Lucas numbers L_{n} the following inequalities:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{n}^{\mathrm{x}+1}}>\mathrm{F}_{\mathrm{n}^{\mathrm{X}}}^{2} \quad(\mathrm{n} \geq 2, \mathrm{x} \geq 1) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{F}_{5^{\mathrm{X}}+1}>5 \mathrm{~F}_{5}^{2} \mathrm{X} \quad(\mathrm{x} \geq 1) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\mathbb{L}_{\mathrm{n}^{\mathrm{X}+1}}>\mathrm{L}_{\mathrm{n}^{\mathrm{X}}}^{2}(\mathrm{n}>2, \mathrm{x} \geq 1) \tag{*}
\end{equation*}
$$

The aim of this note is to strengthen (4), (5), and (4*) as follows:

$$
\begin{align*}
& F_{n^{x+1}}>n_{n^{x}}^{n} \quad(n \geq 2, x \geq 1) \tag{A}\\
& L_{n^{x+1}}>L_{n^{x}}^{n-1} \quad(n \geq 2, x \geq 1)
\end{align*}
$$

For the proof of (A), (B) we shall use the well-known formulae
(C) $\quad \mathrm{F}_{\mathrm{n}}=\frac{1}{\sqrt{ } 5}\left\{\alpha^{\mathrm{n}}-(-1)^{\mathrm{n}} \alpha^{-\mathrm{n}_{7}}\right\}$
(D) $\quad L_{n}=\alpha^{n}+(-1)^{n} \alpha^{-n}$

$$
\alpha=\frac{1+\sqrt{5}}{2}>\frac{3}{2}, \alpha^{\mathrm{n}+2}=\alpha^{\mathrm{n}+1}+\alpha^{\mathrm{n}}
$$

as well as the following inequalities:
(E)

$$
\begin{array}{r}
\frac{1}{\sqrt{5}} \cdot \frac{6}{7} \cdot 2^{n}>n \quad(n \geq 3) \\
\frac{1}{2} \alpha^{n}>F_{n}(n \geq 2) \\
\frac{6}{5} \alpha^{n}>L_{n} \quad(n \geq 2) \tag{G}\\
45
\end{array}
$$

Proof of (E) (by induction). (E) is equivalent to
(E^{\prime})

$$
6 \cdot 2^{n}>7 \mathrm{n} \sqrt{5}
$$

$\left(\mathrm{E}^{\prime}\right)$ is valid for $\mathrm{n}=3$. If (E^{\prime}) is valid for n , then:
$6 \cdot 2^{n+1}=6 \cdot 2^{n}+6 \cdot 2^{n}>7 n \sqrt{5}+7 n \sqrt{5}>7 n \sqrt{5}+7 \sqrt{5}=7 \sqrt{5}(n+1)$.

Proof of (F), (G) (by induction on n and $n+1$).
(F) is valid for $n=2,3$, since

$$
\begin{aligned}
& \alpha^{2}=1+\alpha=1+\frac{1+\sqrt{5}}{2}=\frac{3+\sqrt{5}}{2}>\frac{3+\sqrt{4}}{2}>2=2 \mathrm{~F}_{2}, \\
& \alpha^{3}=\alpha+\alpha^{2}=\frac{1+\sqrt{5}}{2}+\frac{3+\sqrt{ } 5}{2}=2+\sqrt{ } 5>2+\sqrt{ } 4=4=2 \mathrm{~F}_{3} .
\end{aligned}
$$

If

$$
\begin{aligned}
\alpha^{n} & >2 F_{n} \\
\alpha^{n+1} & >2 F_{n+1}
\end{aligned}
$$

then also:

$$
\alpha^{\mathrm{n}+2}=\alpha^{\mathrm{n}}+\alpha^{\mathrm{n}+1}>2\left(\mathrm{~F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}+1}\right)=2 \mathrm{~F}_{\mathrm{n}+2}
$$

(G) may be proven analogously, noting that, by arguments employed in the proof of (F), (G) is valid for $n=2,3$, since

$$
\begin{aligned}
& \frac{6}{5} \alpha^{2}>\frac{6}{5} \cdot \frac{3+\sqrt{4}}{2}=3=\mathrm{L}_{2} \\
& \frac{6}{5} \alpha^{3}>\frac{6}{5} \cdot 4>4=\mathrm{L}_{3}
\end{aligned}
$$

Proof of (A).
(1) For $\mathrm{n}=2$ we have, by (C):

$$
\begin{aligned}
& \mathrm{F}_{2^{\mathrm{X}+1}}=\frac{1}{\sqrt{5}}\left\{\alpha^{2^{\mathrm{X}+1}}-\alpha^{-2^{\mathrm{x}+1}}\right\}=\frac{\sqrt{ } 5}{5}\left\{\alpha^{2^{\mathrm{x}+1}}-\alpha^{-2^{\mathrm{x}+1}}\right\}>\frac{2}{5}\left\{\alpha^{2^{x+1}}-\alpha^{-2^{\mathrm{x}+1}}\right\}> \\
& \frac{2}{5}\left\{\alpha^{2^{x+1}}-\left(2-\alpha^{-2^{x+1}}\right)\right\}=\frac{2}{5}\left\{\alpha^{2^{x+1}}-2+\alpha^{-2^{x+1}}\right\}=2\left\{\frac{1}{\sqrt{5}}\left(\alpha^{2^{x}}-\alpha^{-2^{x}}\right)\right\}^{2}=2 F_{2^{x}}^{2}
\end{aligned}
$$

(2) For $n \geq 3$ we have, by arguments employed in the proof of (F),

$$
\alpha^{\mathrm{n}+1} \geq \alpha^{3^{2}}=\left(\alpha^{3}\right)^{3}>4^{3}>7,
$$

i.e.,

$$
\frac{\alpha^{\mathrm{n}^{\mathrm{x}+1}}}{7}>1
$$

Hence, by (C), (E):

$$
\begin{array}{r}
\mathrm{F}_{\mathrm{n}^{\mathrm{X}+1}}=\frac{1}{\sqrt{5}}\left\{\alpha^{\mathrm{n}^{\mathrm{x}+1}}-(-1)^{\mathrm{n}} \alpha^{-\mathrm{n}^{\mathrm{x}+1}}\right\}>\frac{1}{\sqrt{5}}\left\{\alpha^{\mathrm{n}^{\mathrm{x}+1}}-\frac{\alpha^{\mathrm{n}^{\mathrm{x}+1}}}{7}\right\}= \\
\frac{1}{\sqrt{5}} \cdot \frac{6}{7} \alpha^{\mathrm{n}^{\mathrm{x}+1}}=\frac{1}{\sqrt{5}} \cdot \frac{6}{7} \cdot 2^{\mathrm{n}}\left(\frac{\alpha^{\mathrm{n}}}{2}\right)^{\mathrm{n}}>\mathrm{nF}_{\mathrm{n}^{\mathrm{x}}}^{\mathrm{n}}
\end{array}
$$

Proof of (B). For $n \geq 2$ we have $\left(n^{x}-1\right) /(n-1)=n^{x-1}+n^{x-2}+\cdots$ $+1 \geq n^{x-1} \geq(n-1)^{x-1}$, whence: $n^{x}-1 \geq(n-1)^{x}$. Hence, by (D), (G), and noting that (by arguments employed in the proof of (A), part (2)) $-\alpha^{-\mathrm{n}^{\mathrm{x}+1}}>-\frac{1}{7}$ we have:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{n}^{\mathrm{X}+1}}=\alpha^{\mathrm{n}^{\mathrm{x}+1}}+(-1)^{\mathrm{n}} \alpha^{-\mathrm{n}^{\mathrm{x}+1}} \geqslant \alpha^{\mathrm{n}^{\mathrm{x}+1}}-\alpha^{-\mathrm{n}^{\mathrm{x}+1}}>\alpha^{\mathrm{n}^{\mathrm{x}+1}}-\frac{1}{7}> \\
& \alpha^{\mathrm{n}^{\mathrm{X}+1}}-\frac{1}{3} \alpha^{\mathrm{n}^{\mathrm{x}+1}}=\frac{2}{3}\left(\alpha^{\mathrm{nx}}\right)^{\mathrm{n}}>\frac{1}{\alpha}\left(\alpha^{\mathrm{X}}\right)^{\mathrm{n}}=\alpha^{\mathrm{n}^{\mathrm{X}}-1}\left(\alpha^{\mathrm{n}}\right)^{\mathrm{n}-1}> \\
& \alpha^{(\mathrm{n}-1) \mathrm{x}}\left(\alpha^{\mathrm{n}^{\mathrm{x}}}\right)^{\mathrm{n}-1} \geq \alpha^{\mathrm{n}-1}\left(\alpha^{\mathrm{n}^{\mathrm{x}}}\right)^{\mathrm{n}-1}>\left(\frac{6}{5}\right)^{\mathrm{n}-1}\left(\alpha^{\mathrm{n}^{\mathrm{x}}}\right)^{\mathrm{n}-1}= \\
& \left(\frac{6}{5} \alpha^{n^{x}}\right)^{\mathrm{n}-1}>\mathrm{L}_{\mathrm{n}^{\mathrm{x}}}^{\mathrm{n}-1} .
\end{aligned}
$$

Remark. In proving the inequalities (A), (B), I was assisted by my son, Moshe, who also noted that (B) cannot be strengthened, analogously to (A), to: $\mathrm{L}_{\mathrm{n}_{\mathrm{X}+1}}>\mathrm{L}_{\mathrm{n}^{\mathrm{x}}}^{\mathrm{n}}$. Indeed, for $\mathrm{n}=4$, $\mathrm{x}=1$, we have: $\mathrm{L}_{4^{2}}=2207<2401=7^{4}$ $=L_{4}^{4}$.

It may also easily be seen, by (C), (D), that
(H)

$$
\lim _{x \rightarrow \infty} \frac{F_{n x+1}}{\mathrm{nF}_{\mathrm{n}^{x}}^{\mathrm{n}}}=\infty
$$

$$
\lim _{x \rightarrow \infty} \frac{L_{n^{x+1}}}{L_{n^{x}}^{n-1}}=\infty
$$

which shows that, for any given $n \geq 2$, there exists an X such that, for any $\mathrm{x}>\mathrm{X}, \mathrm{F}_{\mathrm{n}^{\mathrm{X}+1}}>\mathrm{nF}_{\mathrm{n}^{\mathrm{X}}}^{\mathrm{n}}, \mathrm{L}_{\mathrm{n}^{\mathrm{X}+1}}>\mathrm{L}_{\mathrm{n}^{\mathrm{X}}}^{\mathrm{n}-1}$.

By means of (A), (B), and employing the same reasoning as in the proof of (3), $\left(3^{*}\right)$ in P, we have, for the greatest primitive divisors F_{n}^{\prime} of F_{n} and L_{n}^{\prime} of L_{n}, the following generalized inequalities:

$$
\text { SOME CORRECTIONS TO VOLUME } 1, \text { NO. } 3
$$

Page 16: In Equation (4^{*}), replace $n \geq 2$ by $n>2$.
The last line should read:
\ldots for any positive integer $n \geq 2, n>2$, respectively.

Page 17: On line 6, add $>$ to read:

$$
\alpha=\frac{1+\sqrt{5}}{2}>\frac{1+\sqrt{4}}{2}=\frac{3}{2}
$$

Line 8, Equation (7), should be corrected to read:

$$
\alpha>\frac{3}{2}
$$

On Line 11, add = to read:

$$
\beta=\frac{1-\sqrt{5}}{2}<\frac{1-\sqrt{4}}{2}=-\frac{1}{2}
$$

$$
\begin{align*}
& \mathrm{F}_{\mathrm{p}^{\mathrm{x}+1}}>\mathrm{pF}_{\mathrm{p}^{\mathrm{x}}}^{\mathrm{p-1}} \quad(\mathrm{p}-\text { a prime } \neq 5, \mathrm{p} \geq 2, \mathrm{x} \geq 1) \tag{J}\\
& \mathrm{F}_{5^{\mathrm{X}+1}}>\mathrm{F}_{5^{4}}^{4} \quad(\mathrm{x} \geq 1) \tag{K}\\
& L_{p^{\prime}+1}>{\underset{p}{x}}_{p-2}^{x} \quad(p-\text { a prime, } \quad p \geq 2, x \geq 1) .
\end{align*}
$$

