$+v(n) F_{n+3}+A_{p}$, where u and v are polynomials in n of degree p and A_{p} is a constant independent of n. It can be shown that the coefficients of u and v may be found by solving the $2 p+2$ equations obtained by letting n take on any $2 p+2$ consecutive values.

Also solved by Zvi Dresner and Marjorie Bicknell

A CLASSICAL SOLUTION

H-16 Proposed by H. W. Gould, West Virginia University, Morgantown, W. Va.
Define the ordinary Hermite polynomials by $H_{n}=(-1)^{n} e^{x^{2}} D^{n}\left(e^{-x^{2}}\right)$.
(i)

$$
\sum_{n=0}^{\infty} H_{n}(x / 2) \frac{x^{n}}{n!}=1
$$

Show that:
(ii)

$$
\sum_{n=0}^{\infty} H_{n}(x / 2) \frac{x^{n}}{n!} F_{n}=0,
$$

(iii)

$$
\sum_{n=0}^{\infty} H_{n}(x / 2) \frac{x^{n}}{n!} L_{n}=2 e^{-x^{2}}
$$

where F_{n} and L_{n} are the $n^{\text {th }}$ Fibonacci and $n^{\text {th }}$ Lucas numbers, respectively.

We recall that $\sum_{n=0}^{\infty} H_{n}(t) \frac{x^{n}}{n!}=e^{2 t x-x^{2}}$. For $t=\frac{x}{2}$ this reduces to $\sum_{n=0}^{\infty} H_{n}\left(\frac{x}{2}\right) \frac{x^{n}}{n!}=1$.
$\mathrm{n}=0 \quad$ Put $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$. Then $(\alpha-\beta) \sum_{\mathrm{n}=0}^{\infty} H_{\mathrm{n}}\left(\frac{\mathrm{x}}{2}\right) \frac{\mathrm{x}^{\mathrm{n}}}{\mathrm{n}!} \mathrm{F}_{\mathrm{n}}=\mathrm{e}^{\left(\alpha-\alpha^{2}\right) \mathrm{x}^{2}}-$ $e^{\left(\beta=\beta^{2}\right) x^{2}=0}$ since $\alpha-\alpha^{2}=\beta-\beta^{2}=-1$.

Similarly,

$$
\sum_{n=0}^{\infty} H_{n}\left(\frac{x}{2}\right) \frac{x^{n}}{n!} L_{n}=e^{\left(\alpha-\alpha^{2}\right) x^{2}}+e^{\left(\beta-\beta^{2}\right) x^{2}}=2 e^{-x^{2}}
$$

See also the solution in the last issue by Zvi Dresner.

Reference continued from page 44 .

1. K. F. Roth, "Rational Approximations to Algebraic Numbers," Mathematika 2 (1955) pp. 1-20, p. 168.
