FIBONACCI GEOMETRY

H. E. Huntley

Below are some additional observations about Hunter's [1] article.

If the rectangle $A B C D$ has a triangle $D P P^{\prime}$ inscribed within it so that $\triangle A P D=$ $\Delta B P P^{\prime}=\Delta P^{\prime} D C$ then $x(w+z)=w y=z(x+y)$ whence

$$
\begin{equation*}
\frac{y}{x}=\frac{w+z}{w}=\frac{z}{w-z} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\text { From (i) } \frac{y}{x}=\varphi \text { or } y=\varphi x \tag{iii}
\end{equation*}
$$

Thus P, P^{\prime} divide their sides in the Golden Section.
Now, suppose $A B C D$ is the Golden Rectangle, beloved of the Greek architects, i. e. $A B / B C=\varphi$, then $\frac{x+y}{W+z}=\varphi$. Hence, from (ii) and (iii) $\frac{x(l+\varphi)}{z(1+\varphi)}=\varphi$, i. e. $x=\varphi z$ whence $x=w$. From (i) $y=w+z=\varphi^{2} z$. Since $<A=<B=r t<$ and $x=w, y=w+z$, triangles $P A D, P^{\prime} B P$ are congruent. It follows that $P D=P P^{\prime}$, that $\varangle A P D$ is the complement of $\left\langle B P P^{\prime}\right.$, whence $\left\langle D P P^{\prime}\right.$ is a right angle.

The area of the right triangle is
$\frac{1}{2}\left(w^{2}+y^{2}\right)=\frac{1}{2}\left(\varphi^{2} z^{2}+\varphi^{4} z^{2}\right)=\frac{1}{2} \varphi^{2} z^{2}\left(\varphi^{2}+1\right)=\frac{1}{2} z^{2}(\varphi+1)(\varphi+2)=\frac{1}{2} z^{2}(4 \varphi+3)$.
we may conclude, therefore, that if the rectangle is the Golden Rectangle, that is, if its adjacent sides are in the Golden Ratio, φ, then the inscribed triangle is right-angled and isosceles, the length of the equal sides being $z \sqrt{4 \varphi+3}$.

Editorial Note: $P^{\prime} \| A C$

REFERENCES

1. J.A.H. Hunter, "Triangle Inscribed in a Rectangle" l(1963) October, pg. 66.
