EXPLORING THE FIBONACCI REPRESENTATION OF INTEGERS

Proposed by Brother U. Alfred on page 72, Dec. 1963,
"The Fibonacci Quarterly"
The completion of the Theorem stated in the article is:
The Maximum number of different Eibonacci numbers required to represent an integer N for which $[N] \%=F_{n}$ is given by $\left[\frac{n}{2}\right]$.

This is a corollary of the following theorem.
Eor $E_{n}<N \leq F_{n+1}$ the number N can be represented as a sum of Fibonaccinumbers, the largestwhich is F_{n} and the smallest greater than or equal to F_{2}. Moreover, the sumnever contains two consecutive Fibonacci numbers. We therefore have at most the alternating terms of indices from 2 to n which gives us $\left[\frac{n-2}{2}+1\right]=\left[\frac{n}{2}\right]$, as claimed.

The proof of this theorem depends upon a Lemma which is a well known Fibonacci Identity that $F_{2}+F_{4}+F_{6}+\ldots+F_{2 n}=F_{2 n+1}-1$ and that $E_{3}+E_{5}+E_{7}+\ldots+F_{2 n-1}=E_{2 n}-1$. The proof of the first part of this is given byinduction and the second partis similarly proved. Proof.
For $\mathrm{n}=1$, we have $E_{2}=E_{3}-1$
$n=2$, we have $F_{2}+E_{4}=E_{5}$ - I which clearly shows the Lemma holds for $n=1,2$.

Now assume that it holds for all $n \leq K$, where K is a fixed but unspecified positive integer greater than or equal to 3 .
i.e. $F_{2}+F_{4}+\ldots+E_{2 K}=E_{2 K+1}-1$, therefore by addition to both sides we have that $F_{2}+F_{4}+\ldots+F_{2 K}+F_{2 K+2}=F_{2 K+1}+F_{2 K+2}-1$

$$
=F_{2 K+3}-1
$$

which implies the Lemma holds for all positive n.
Using this Lemma whichwe shall call Lemma 1, part A fox the first part which was just proved, and part B for the second part with the odd indices; we can now prove the general theorem that for $F_{n}<N \leq F_{n+1}$, we can represent N as a sum of at least alternating Fibonacci numbers where the largest is $F_{n 2}$ for $N<F_{n+1}$ and which trivially is just F_{n+1} itself when $N=F_{n+1}$.
Proof. For $N=1$, we have $1=F_{2}$, and fox $N=2$, we have $2=F_{3}$. Now assume the theorem true for all $N \leq k$, wherekisa fixed but unspecified positive integex and n is such that $F_{n}<k \leq F_{n+1}, n \geq 3$. Now if Contimued on Page 134

