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average of an arithmetical function f is to express / as a Dirichlet product of 
functions g and h. Therefore, it is natural to investigate the possibility of ex-
pressing a function / as a product of two functions under our new convolutionj and 
whenever such a representation exists, to use it to obtain asymptotic results for 
/. This would allow us to investigate certain functions which do not arise natu-
rally as a Dirichlet product. Some results have been obtained by this method but 
more refinements are required. 
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1. INTRODUCTION 

In two previous papers, [3] and [4], certain basic properties of the sequence 
{An(x)} defined by 

A0(x) = 0, A1(x) = 1, A2(x) = 1, A3(x) = x + 1, and 
(1.1) 

An(x) =xAn_2(x) - An_^(x) 
were obtained by the authors. 

Here, we wish to investigate further properties of this sequence using as our 
guide some of the numerical information given by L. G. Wilson [5]. Terminology and 
notation of [3] and [4] will be assumed to be available to the reader. In parti-
cular, let 
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(1.2) 6i = 4cos2g, 
then ln 

(1-3) 3 _ , = g ., 
(1.4) 3; - 2 = 2 cos ̂ , 
and n 

(1.5) (3; - 2) 2 = 32,8 

The main result in this paper is Theorem 6. Besides the proof given, another 
proof is available. 

2. PROPERTIES OF ̂ ( 3^ - 2) 

The following theorems generalize computational details in [5]. In Theorems 1 
and 2, we use results in [3] and [4] with the Chebyshev polynomial of the second 
kind, Un(x). 

( +1 (i odd) 
THEOREM 1 : A 2 n ^ 1 ( e > i - 2) = < (£ = 1, 2, 3, ..., n - 1). 

( -1 (£ even) 

PROOF: A^^tft - 2) = A2n(&, - 2) + ̂ 2 n_2(3; - 2) 

= ^.xfcos H ) + C/n_2(cos ̂ ) by (1.4) and [4] 

sinm * — j + sin(n - 1 ) — 

. ii\ sin —-
n 

= ±1 according as i is < 
° I even 

E .g . , i49 2 cos -=• = 1. 

THEOREM 2: Ar($i - 2) = i ^ 2 n - r ( ^ i " 2 ) a cco rd ing as £ i s r 

(p odd; £ = 1 , 2 , 3 , . . . , n - l ) . 

PtfOOF.- ^ ( B * - 2) = A r + 1 ( 3 i - 2 ) + A r . 1 ( 3 — 2) 

= % ^ ( c o s M-) + % ^ ( c o s ^ ) by (1 .4 ) and [4] 

• / r + 1\JTT , . / r - 1\JTT „ . riiT B ^ - — - J — + s i n ( — g - ) — s m - ^ -

£lT £7T 
s m -— s i n TT-

n 2n 
. / r\ii\ sm n - T — / o d d 

- -*• acco rd ing a s ^ i s < 
îT I even 

sin -z— v 

2n 

= [",.?H?)".-fh7)] 
tW2B.P+1(B( - 2) +42 n. r. 1(3i - 2)] by (1.4) and [4], 

^ n - r ^ ; - 2) according as i is j ^ . 
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COROLLARY 1: When i = 1, Ar 2 (cos -) = A2n_Al cos - ) . 

. 3TT' 

E.g., A3[2 cos -J = A7[2 COS -j = ^ = 2 cos - + 1 = ^ = I 2 j " 
sin 

COROLLARY 2: A1(&i - 2 ) , 4 3 ( 3 ; ~ 2 ) , . . . , A2n_1(&i - 2) for a c y c l e of p e r i o d n . 

E . g . , fo r n = 6, i = 1, ^ = A ^ = 1, A3 = 4 g = 1 + / J , 4 5 = A? = 2 + / I . 

Our next theorem involves $(n) , Euler's (J)-f unction. 

THEOREM 3: Let n be odd and m = ™cj)(n) , then 32„ - 2 = -(3X - 2). 

PROOF: By the Fermat-Euler Theorem, since (2, n) = 1, it follows that 

2m ~ ±1 (mod ri). 

Hence, there exists an odd integer t such that 2m = nt ± 1. Therefore, 

g9m - 2 F 2 cos 2m(~) = 2 cos(n£ ± 1)-

= 2 COS TTt COS (± —J 

= -(Bx - 2). 

COKOLLARF 3: When n is even, just one operator ("square and subtract 2") produces 
the Bx - 2 for n/2. 

o 2lT 0 TT 
2 cos — = 2 cos —rr-. 

n n/2 

This is obvious, because ($x - 2) - 2 

3. SEMI-INFINITE NUMBER PATTERNS 

Consider the pattern of numbers and their mode of generation given in Table .1 
for a fixed number k = 5 of columns (Wilson [5]). 

--^Column ??? 
R o w n ^ ^ ^ ^ 

0 

1 

2 

3 

4 

5 

6 

1 

1^ 

2-C 

6C 

20C 

70C 

250C 

900" 

^ 2 : 

^ > 6 ^ 

^ 2 o ; 

^ 7 0 : 

"250 : 

^900: 

2 

/ i -

^ > 4 : 

^ : H : 

^ T 5 0 ' 

^ ^ 2 : 

^ > 8 : 

^ T 3 0 : 

C no; 
^ 1 8 0 : 

^ 6 5 0 : 

^2350" 

^400^ 

3 

^ K 

^ > 4 C 

^ 1 6 " 

^ T 6 0 ^ 

^ > 2 C 

^ > 8 C 

^ 3 0 : 

^ ^ L I O : 
^ 2 2 0 ; 

":8oo" 
J450C 

4 

^ X ^ 

^ > 4 C 

^ 1 < 

^ 5 0 ^ 

J^180^ 
^"400^ 

>450" 
2900 

^ 6 5 C C 
"2350" 

5 

^>2C^ 
" > 2 

^ : 6 

^ 2 0 
> 7 0 

^ > 7 0 
> 5 0 

^ 2 5 0 
^900 

^ 9 0 0 

Table 1„ Pattern of Integers for k = 5 
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Designate the row number by n and the column number by m (n = 0, 1, 2, 
m = 1, 2, ..., k). The element in row n and column m is denoted by Unm. 

From Table 1, the following information may be gleaned: 

(3.1) 

u„3 

1 
2 

2 

ol 
1 

2J 

p»-i,i~ 
Wn-l, 2 

[_^n-l, 3_ 

= 

1 
1 
0 

1 
2 
2 

0 
1 
2 

n 
1 
1 
1 

(3.2) 5<^n-l, n-2, m ), n > 2 and 

(3.3) 

where 

Unl = ^ S " • ^ ( ° W " " 1 " ^ " _ 1 ) 

'n2 tfn„ = -|=C4a 
rc-1 

_2 
/B" 

(<7a' 

B&""1), n > l , 

Z*""1) 

(3.4) 

a =-|(5 + /5),.6 -|(5 - /5) 

a =|(1 + /5), 3 ={(1 - /5) 

4 = 2 + /B~, B = 2 - / 5 

C = 3 + /5, 0 = 3-/5 

so that 4 = 2a + 1, B = 23+1, C - 2(a + 1) = 4 + 1, D = 2(3 + 1) - B + 1. 
It follows from (3.3) and (3.4) that 

(3.5) 

and 

(3.6) H»(fe) = £ = 2« = M2c°s?)-
Extending Table 1 to the case k = 6, so that now, for example, U51 = 252 and 

^3 = 236, we eventually derive Unm = 6£/„.lm - 9£/„_2>m + 2Un.3t„; thus 

(3.7) 

whence 

(3.8) 

and 

(3.9) 

I'm - J*2" + <2 + / J ) n + (2 - /3)"} = UHt 

Un2 = \{2n + (1 + /3)(2 +/3)" + (1 - /3)(2 - /3)"} = £/„5 

Un3 = |{-1.2n + (2 + /3)(2 + /3)" + (2 - /3)(2 - /3)"} = Un„, 

Results (3.5), (3.6), (3.8), and (3.9) suggest a connection between various 

limits of ratios (as n -*• °°) and corresponding Ar (2 cos 77]. This link is developed 
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in the next section. [In passing, we remark that for k = 9, n ~ 13, we calculate 
to two decimal places that 

rT
13'2 = 2.85, AJI COS ~) = 2.88, 

the common value to which they aspire as n -*- °°, k ->• °° being 3 (cf. Theorem 6).] 

4. AN INFINITE NUMBER PATTERN 

For 1 <. m <_ k, we find [cf. (3.1)] 

(4.1) 

with [7 

(4.2) 

n m n - 1, m - 1 n-1, m n-1, m + 1 
Unl - ^ n . l s l +«/ n-1.2 

1 < m < k 

m = 1 

m = k 

n, k+1-m * Also 

[k/2] 

J ] (-DI,-1^rz/n.rf 
i> = 1 

2n\ 
Jnl ' (n ) 

n > [Zc/2] 

n <. k - 1 

in which vnm is an element of an array in row n and column m defined by 

(4.3) 

Vnm Vn-1, m ~*~ Vn-2, m-1 

yMl = n> vy 1» *>0w = 0> *> 

n >_2m 

n < 2m 

In, In- 1 = 2. 

For example, i f 

27f /„ . 2 , m + 30y„_ 3 ) m - 9Un_,,m. 

k - 6, Unm- 6Un_Um - 9U„_Z,„ + 2Un.3,„, 
and i f 

fc - 9, yn m = 9 y „ . 1 > m - 27[/„.2 > r a + 3 o y „ . 3 i m 

We look briefly at the {vn/J in Section 5. 
Notice in (4.2) that for n -> °°, i.e., k -> °°, £/nl are the central binomial co-

efficients. 
Now let n •> °° and fc •> °°. We wish to obtain the limit of Unm/Unm,. But first, 

by easy calculation using (4.1) we derive 

(4.4) 

THEOREM 4 

l i m ( ^ - \ 1. 
n-«\ tfnl / 4 

: limf-rj^-) 2m - 1. 

PROOF; The result is trivially true for m = 1. Assume the theorem is true 
for ?7Z = p. That is, assume 

lim(|^-) = 2p - 1. 

We test this hypothesis for m = p + 1, using (4.1) several times. Now 
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R = l im • ^ ^ 
Vnl 

(U + 2U + (U - U - 2U ) J n - l , p n-l, p + l v n , p + l n - l , p n - l , p + l ' 
l i m / . 

'2(tf - U - 2U ) + (U - 2U ) 
n . , nP n-l, p-l n-l, p n, p + l n-l, p + l 

= lxm< — 
/u u u u u 

i « / n P n - l , p - l n - l , 1 rt n - l , p n-l, 1 
l im <2| —— - — • — - 2 ^nl Un_lfl Unl Un,ltl Unl 

u u u 
n, p+l n-l, p +1 n- 1, 

^nl "n-l,1 "nl 

2(2p-l-(^)-2(^))+(B-2f) by (4.4) and the 
inductive hypothesis, 

whence R = 2p + 19 which establishes the theorem. 
' U„m\ 2m - 1 

COROLLARY 4: n^« \Unmt J 2mf - 1 

THEOREM 5: ^2m_1(B1 - 2) = 2m - 1 = ^2k~(2m-i)^i " 2 ) * X - m - ̂ 5 fc ̂  C° " 

sin(2w - I W -
PKOOF: ^ ^ ( ^ - 2) « — -jjp—^ = ̂ 2k.(2m-i)(Bi - 2> by Theorem 2 

Sin Ik 
= 2m - 1 

on using a trigonometrical expansion for the numerator, simplifying, and then let-

ting k -> °°o 
Clearly there is a connection between Theorems 4 and 5. We therefore assert: 

THEOREM 6: lim ( M = ̂ . ^ - 2) - 2m - 1 <fe - »>. 

Observe that, with the aid of (4.1) and the manipulative technique of Theorem 
4, we may deduce 

Ultimately, 

/ Un-r, m\ 2m - 1 
(4.7) lim Unl 

from which Theorem 4 follows if we put r = 0. 
This concludes the theoretical basis, with extensions, for the detailed numeri-

cal information given by Wilson [5]. 
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5. SOME PROPERTIES OF {i^J 

Define 

(5.1) 

THEOREM 7: krVkr = 1. 

At;. kr 'kr 

PROOF: Use induction. When r = 1, 

bvkl - k - (k - 1) = 1 
Assume the result is true for r = 2, 3, . 

Asi>,s - A * " 1 ^ . ) 

k-1, r 

by (5.1) and (4.3). 

, s - 1. Then 

- A'£ (u fc-i, + y, ^ ) 
k-1,8 J 

A3-1^ 
fc-2, s-1 

k-2, s-1 

from the inductive hypothesis 

by (5.1) 
and (4.3) 

Hence, the theorem is proved. 

It can also be shown that 

(5.2) 

whence 

(5.3) 

Vnm n - m\ m ) \ m ) \ m - l ) 9 

[n/2] 

]£ Vnm> 
m = 0 

in which L is the nth Lucas number defined by the recurrence relation 

V l + Ln-2 (n > 2) 

with initial conditions Lx = 1, L2 = 3. 
Another property is 

(5.4) Y v = 3 
m = 0 

Table 2 shows the first few values of vkr (see Hoggatt & Bicknell [2], where 
the vkP occur as coefficients in a list of Lucas polynomials). 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0 1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

2 

2 
5 
9 
14 
20 
27 
35 
44 

3 

2 
7 
16 
30 
50 
77 

4 

2 
9 
25 
55 

5 

2 
11 

Table 2. Values of vkr (k = 1, 2, ...., 11) 
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Coefficients in the generating difference equations (4.2),-as fc-varies, appear 
in Table 2 if we alternate + and - signs. Corresponding characteristic polynomi-
als occur in [4] as proper divisors, or as products of proper divisors. Refer to 
Hancock [1], also. 

Further, it might be noted that, if we employ the recurrence relation in (4.1) 
repeated.y, we may expand Unm binomially as 

^nm = "n-t, m-t + \ l ) ^ n - t, m-t + 1 + y 2 / ^ n ' t ' m~t+ 2 + " " " 

(2t\ 
+ [l )Un-t,m + t+l + Vn-t,m+t H < t < n9 1 <. t < TTl) . 

This is because the original recurrence relation (4.1) for Unm is "binomial" (t = 
1), i.e., the coefficients are 1, 2, 1. 

Finally, we remark that the row elements in the first column, U ,, given in 
(4.2), are related to the Catalan numbers Cn by 

(5.5) Unl = (w + l)Cn. 
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1. INTRODUCTION 

In a one-pile take-away game, two players alternately remove chips from a sin-
gle pile of chips. Depending on the particular formulation of play, a constraint 
function specifies the number of chips which may be taken from the pile in each 
position. The game ends when no move is possible. In normal (misere) play, the 
player who makes the final move wins (loses). Necessarily, one of the players has 
a strategy which can force a win. 

In this Quarterly, Whinihan [7], Schwenk [5], and Epp & Ferguson [2] have an-
alyzed certain one-pile take-away games which can be represented by an ordered 


