GENERALIZED FIBONACCI NUMBERS BY MATRIX METHODS
 DAN KALMAN
 University of Wisconsin, Green Bay, WI 54302
 (Submitted November 1980)

In [7], Silvester shows that a number of the properties of the Fibonacci sequence can be derived from a matrix representation. In so doing, he shows that if $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ then
(1)

$$
A^{n}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
u_{n} \\
u_{n+1}
\end{array}\right]
$$

where u_{k} represents the k th Fibonacci number. This is a special case of a more general phenomenon. Suppose the $(n+k)$ th term of a sequence is defined recursive$1 y$ as a linear combination of the preceding k terms:

$$
\begin{equation*}
a_{n+k}=c_{0} a_{n}+c_{1} a_{n+1}+\cdots+c_{k-1} a_{n+k-1} \tag{2}
\end{equation*}
$$

(c_{0}, \ldots, c_{k-1} are constants). Given values for the first k terms, a_{0}, a_{1}, \ldots, a_{k-1}, (2) uniquely determines a sequence $\left\{a_{n}\right\}$. In this context, the Fibonacci sequence $\left\{u_{n}\right\}$ may be viewed as the solution to

$$
a_{n+2}=a_{n}+a_{n+1}
$$

which has initial terms $u_{0}=0$ and $u_{1}=1$.
Difference equations of the form (2) are expressible in a matrix form analogous to (1). This formulation is unfortunately absent in some general works on difference equations (e.g. [2], [4]), although it has been used extensively by Bernstein (e.g. [1]) and Shannon (e.g. [6]). Define the matrix A by

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
c_{0} & c_{1} & c_{2} & & c_{k-2} & c_{k-1}
\end{array}\right]
$$

Then, by an inductive argument, we reach the generalization of (1):

$$
A^{n}\left[\begin{array}{l}
a_{0} \tag{3}\\
a_{1} \\
\vdots \\
a_{k-1}
\end{array}\right]=\left[\begin{array}{l}
a_{n} \\
a_{n+1} \\
\vdots \\
a_{n+k-1}
\end{array}\right]
$$

Just as Silvester derived many interesting properties of the Fibonacci numbers from a matrix representation, it also is possible to learn a good deal about $\left\{a_{n}\right\}$ from (3). We will confine ourselves to deriving a general formula for a_{n} as a function of n valid for a large class of equations (2). The reader is invited to generalize our results and explore further consequences of (3).

Following Shannon [5], we define a generalized Fibonacci sequence as a solution to (2) with the initial terms $\left[a_{0}, \ldots, a_{k-1}\right]=[0,0, \ldots, 0,1]$. Equation (3) then becomes

$$
\left[\begin{array}{l}
a_{n} \\
a_{n+1} \\
\vdots \\
a_{n+k}
\end{array}\right]=A^{n}\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

More specifically, a formula for a_{n} is given by

$$
a_{n}=\left[\begin{array}{lllll}
1 & 0 & 0 & \ldots & 0
\end{array}\right] A^{n}\left[\begin{array}{c}
0 \tag{4}\\
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

When A can be brought to diagonal form, (4) is easily evaluated to provide the desired formula for a_{n}.

As many readers have doubtless recognized, A is the companion matrix for the polynomial

$$
\begin{equation*}
p(t)=t^{k}-c_{k-1} t^{k-1}-c_{k-2} t^{k-2}-\cdots-c_{0} . \tag{5}
\end{equation*}
$$

In consequence, $p(t)$ is both the characteristic and minimal polynomial for A, and A can be diagonalized precisely when p has k distinct roots. In this case we have

$$
\begin{equation*}
p(t)=\left(t-r_{1}\right)\left(t-r_{2}\right) \ldots\left(t-r_{k}\right) \tag{6}
\end{equation*}
$$

and the numbers $r_{1}, r_{2}, \ldots, r_{k}$ are the eigenvalues of A.
To determine an eigenvector for A corresponding to the eigenvalue r_{i} we consider the system

$$
\begin{equation*}
\left(A-r_{i} I\right) X=0 \tag{7}
\end{equation*}
$$

As there are k eigenvalues, each must have geometric multiplicity one, and so the rank of ($A-r_{i} I$) is $k-1$. The general solution to (7) is readily preceived as

$$
X=x_{1}\left[\begin{array}{l}
1 \\
r_{i} \\
r_{i}^{2} \\
\vdots \\
r_{i}^{k-1}
\end{array}\right]
$$

where x_{1} may be any scalar. For convenience, we take $x_{1}=1$.
Following the conventional procedure for diagonalizing A, we invoke the factorization

$$
A=S D S^{-1}
$$

where S is a matrix with eigenvectors of A for columns and D is a diagonal matrix. Interestingly, the previous discussion shows that for a polynomial p with distinct roots $r_{1}, r_{2}, \ldots, r_{k}$, the companion matrix A can be diagonalized by choosing S to be the Vandermonde array

$$
V\left(r_{1}, r_{2}, \ldots, r_{k}\right)=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
r_{1} & r_{2} & r_{3} & \ldots & r_{k} \\
r_{1}^{2} & r_{2}^{2} & r_{3}^{2} & \ldots & r_{k}^{2} \\
& & \vdots & & \\
r_{1}^{k-1} & r_{2}^{k-1} & r_{3}^{k-1} & \ldots & r_{k}^{k-1}
\end{array}\right] .
$$

Related results have been previously discussed in Jarden [3].
To make use of the diagonal form, we substitute for A in (4) and derive the following:

$$
a_{n}=\left[\begin{array}{lllll}
1 & 0 & 0 & \ldots & 0
\end{array}\right] V\left(r_{1}, r_{2}, \ldots, r_{k}\right) D^{n} V^{-1}\left(r_{1}, r_{2}, \ldots, r_{k}\right)\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right] .
$$

Noting that the product of the first three matrices at right is $\left[\begin{array}{lll}r_{1}^{n} & r_{2}^{n} & \ldots\end{array} r_{k}^{n}\right]$, we represent the product of the remaining matrices by

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{k}
\end{array}\right]
$$

and a much simpler formula for a_{n} results:

$$
\begin{equation*}
a_{n}=\sum_{i=1}^{k} r_{i}^{n} y_{i} \tag{8}
\end{equation*}
$$

Now, to determine the values y_{1}, \ldots, y_{k}, we solve

$$
V\left(r_{1}, r_{2}, \ldots, r_{k}\right)\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{k}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

By Cramer's rule, y_{m} is given by the ratio of two determinants. In the numerator, after expanding by minors in column m, the result is

$$
(-1)^{m+k} \operatorname{det} V\left(r_{1}, \ldots, r_{m-1}, r_{m+1}, \ldots, r_{k}\right),
$$

while the denominator is $\operatorname{det} V\left(r_{1}, \ldots, r_{k}\right)$. Thus, the ratio simplifies to

$$
y_{m}=\frac{(-1)^{m+k}}{(-1)^{k-m} \prod_{i \neq m}\left(r_{m}-r_{i}\right)}
$$

The final form of the formula is derived by utilizing the notation of (6) and recognizing the last product above as $p^{\prime}\left(r_{m}\right)$. Substitution in (8), and elimination of the factors of (-1) complete the computations and produce a simple formula for a_{n} :

$$
\begin{equation*}
a_{n}=\sum_{i=1}^{k} \frac{r_{i}^{n}}{p^{\prime}\left(r_{i}\right)} \tag{9}
\end{equation*}
$$

We conclude with a few examples and comments that pertain to the case $k=2$. Taking $c_{0}=c_{1}=1$, the sequence $\left\{a_{n}\right\}$ is the Fibonacci sequence. Here

$$
p(t)=t^{2}-t-1=\left(t-\frac{1+\sqrt{5}}{2}\right)\left(t-\frac{1-\sqrt{5}}{2}\right)
$$

and $p^{\prime}(t)=2 t-1$. By using (9), we derive the familiar formula:

$$
a_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}+\frac{\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{-\sqrt{5}}
$$

Consider next the case $c_{0}=c_{1}=1 / 2$, in which each term in the sequence is the average of the two preceding terms. Now,

$$
p(t)=t^{2}-\frac{1}{2} t-\frac{1}{2}=(t-1)\left(t+\frac{1}{2}\right)
$$

This time, (9) leads to

$$
a_{n}=\frac{1}{3}\left[2+\left(-\frac{1}{2}\right)^{n-1}\right]
$$

More generally for $k=2$, the discriminant of $p(t)$ will be $D=c_{1}^{2}+4 c_{0}$ and (9) produces the formula

$$
a_{n}=\frac{\left(c_{1}+\sqrt{D}\right)^{n}-\left(c_{1}-\sqrt{D}\right)^{n}}{2^{n} \sqrt{D}}
$$

If D is negative, we may express the complex number $c_{1}+\sqrt{D}$ in polar form as

$$
R(\cos \theta+i \sin \theta)
$$

Then the formula for a_{n} simplifies to

$$
a_{n}=\left(\frac{R}{2}\right)^{n-1} \frac{\sin n \theta}{\sin \theta} .
$$

Thus, for example, with $c_{1}=c_{0}=-1$, we obtain

$$
a_{n}=(-1)^{n-1} \frac{2}{\sqrt{3}} \sin \left(\frac{n \pi}{3}\right)
$$

This sequence $\left\{a_{n}\right\}$ is periodic, repeating $0,1,-1$, as may be verified inductively from the original difference equation

$$
a_{n+2}=-a_{n}-a_{n+1} ; a_{0}=0 ; a_{1}=1
$$

ACKNOWLEDGMENT
The author is grateful to the referee for helpful criticism and for providing additional references.

REFERENCES

1. Leon Bernstein. The Jacobi-Perron Algorithm: Its Theory and Application. Lecture Notes in Mathematics, 207. Heidelberg: Springer-Verlag, 1971.
2. Samuel Goldberg. Introduction to Difference Equations. New York: Wiley \& Sons, 1967.
3. Dov Jarden. Recurring Sequences. Jerusalem: Riveon Lematematika, 1966.
4. Kenneth A. Miller. Linear Difference Equations. New York: Benjamin, 1968.
5. A. G. Shannon. "Fibonacci Analogs of the Classical Polynomials." Mathematics Magazine 48 (1975):123-30.
6. A. G. Shannon. "On the Multip1ication of Recursive Sequences." The Fibonacci Quarterly 16, no. 1 (1978):27-32.
7. J. R. Silvester. "Fibonacci Properties by Matrix Methods." Mathematical Gazette 63 (1979):188-91.
