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B-271(b) (12, 1974): If k is even, then lk - 2ek divides 

h(n+2)k ~ 2h(n+l)k°k + hnkCk. 

(This g e n e r a l i z a t i o n was sugges ted by t h e r e f e r e e . ) 

B-275 (13, 1975) : hmn - V * w ( » - i > " <-<*)Wfcw<»- 2) • 

B-277 (13, 1975)_: JL2n ( 2 f c + 1 ) = C2nH2n (mod f 2 n ) . 

B-282 (13, 1975): I f c = d2 (d > 0 ) , then 2dlnln + l , \^+i'oZn\» a n d c £ 2 n + £ 2 n + 2 
a r e t h e l e n g t h s of a r i g h t - a n g l e d t r i a n g l e . 

B-294 (13, 1975): hnlk + hkln = 2hn+k + q(-c)kln_k. 

B-298 (14, 1976): (b2 + hc)hln+ sh2n_ 3 = p 2 £ 4 n + 2cpqlhn_ x + q 2 o 2 ^ n . 2 + ^ 2 n ' 3 £ 6 , 
where e = p 2 - Z?p^ - oq2 = 9m. 

B-323 (15, 1977): h2
n + t - (-e)*/*2 = ft(ph2n + p + ^ 2 n + t - i ) -

^ 3 4 2 q 5 , 1977): 2c3 Z^^ + fc3&3
H + 6 g £ 2

+ 1 £ n - 1 • (£ n + 1 + g ^ . , ) 3 , 

B-343 (15, 1977): £ [c/ 2 f c_ xf2(n.fc) + 1 - f2kf2(n-k + i)] " ^ 2 j 4 J ^ " & n £ 2n + i) • 

B-354 (16, 197*;.- /z 3
+ k - ^3/z3 + ( - c? ) f c f e n . k [ e 2 k ^ . f c + 3/zn+k/zn£k] = 0. 

JB-355 (16, J 9 7 ^ : ^ 3
+ / c - iskh3

n + (~c)3kh3
n_k = 3e(-c)nKfkf2k-

B-379 (17 , 1979;.- / 2 n = n b ( - " g ) n _ 1 [mod (Z?2 + 4c) ] fo r n = 1, 2 , . . . . 
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In examining t h e g a m b l e r ' s r u i n problem (a s imple case of random walk) w i th a 
f i n i t e number of p o s s i b l e s t a t e s , we were led to c o n s i d e r a sequence of l i n e a r r e -
c u r r e n c e r e l a t i o n s t h a t d e s c r i b e t h e number of ways t o r each a g iven s t a t e . These 
r e c u r r e n c e r e l a t i o n s have a sequence of po lynomia ls as t h e i r a u x i l i a r y e q u a t i o n s . 
These polynomials were unknown to u s , bu t proved e x c e p t i o n a l l y r i c h i n i d e n t i t i e s . 
We g r a d u a l l y n o t i c e d t h a t t h e s e i d e n t i t i e s were analogous t o well-known i d e n t i t i e s 
s a t i s f i e d by t h e F ibonacc i numbers. A check of back i s s u e s of The Fibonacci Quar-
terly then r e v e a l e d t h a t our sequence of po lynomia ls d i f f e r e d only i n s i g n from 
t h e F ibonacc i po lynomia ls s t u d i e d i n [ 1 ] , [ 5 ] , and s e v e r a l o t h e r p a p e r s . 

In t h i s pape r we show, u s i n g graph t heo ry and l i n e a r a l g e b r a , how t h e g a m b l e r ' s 
r u i n problem g i v e s r i s e t o our sequence of po lynomia l s . We then compare our p o l y -
nomials t o t he F ibonacc i polynomials and e x p l a i n why t h e two sequences s a t i s f y 
analogous i d e n t i t i e s . F i n a l l y , we use t he P a s c a l a r r a y s i n t r o d u c e d i n our a n a l y -
s i s of g a m b l e r ' s r u i n t o g ive a nove l proof of t h e d i v i s i b i l i t y p r o p e r t i e s of our 
sequence . 
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The Fibonacci numbers are defined recursively by 

F0 = 0S Fr = 1, and Fn = Fn_x +,Fn_2, n >_ 2. 

Likewise, the Fibonacci polynomials are defined by 

F0(x) = 0, F±(x) = 1, and Fn (x) = xFn_1(x) + Fn_2(x), n _> 2 

(see [1, p. 407]). 

1. GAMBLER1 S RUIN AND PASCAL ARRAYS 

A gambler whose initial capital is j dollars enters a game consisting of a 
sequence of discrete rounds. Each round is either won or lost. If the gambler 
wins a round, he is awarded one dollar; if he loses the round, he must forfeit one 
dollar. The game continues until either! 

1. His capital reaches 0 for the first time. (Ruin.) 
2. His capital reaches b > 1 for the first time. (Victory.) 

Zero is called the lower barrier and b the upper barrier. Since the game ends as 
soon as either barrier is reached, these barriers are absorbing [3, p. 342], 

We are interested in the number of ways the gambler*s capital can reach i dol-
lars, 0 < i < b9 in n rounds. Since he gains or loses one dollar in each round, 
this number equals the sum of the number of ways his capital can reach i - 1 or 
i + 1 dollars inn - 1 rounds, provided that i - 1 and i + 1 do not lie on the 
barriers. These numbers thus satisfy a recursive relation similar to that of the 
binomial coefficients in Pascal's triangle, except for the interference of the 
barriers. 

Following Feller [3, Ch. 3], we use a "left-to-right" format for our truncated 
Pascal triangle rather than a "top-to-bottom" format. Thus in Diagram 1, we plot 
the numbers we have been describing on integer lattice points (n, i) with b = 5. 
We make the initial capital three dollars. 

Capital 

0 1 2 3 4 5 6 7 

Number of Rounds 

Diagram 1 

The appearance of the Fibonacci numbers Fn and Fn+1 in the nth column is an acci-
dental consequence of the selection of b - 5. In speaking of the point (n, i), we 
are using the "column first, row second" convention that is standard for coordi-
nate systems, not the "row first, column second" convention of matrix theory. 

It will be useful later to employ this rectangular lattice with more general 
initial values (the values in the 0th column). Given^an integer b > 1 and a vec-
tor X0 e €h~Y

 9 we define the Pascal Array P. A. (b9 X 0 ) , of height b and initial 
vector X09 to be the (complex) array whose (n, £)-entry, for n _> 0 and 0 < i < b9 
is 

X0 • ei if n = 0 
F(n - L, b9 X0s i - 1) + F(n - 1, b9. £Q9 i + 1) 

(1) F(n, b9 X0, i) = { if n > 0 and 1 < i < b - 1 
F(n - 1, b9 X0s 2) if n > 0 and i = 1 

KF(n - 1, b9 Jfo» b - 2) if n > 0 and i = b - 1. 
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{Si. is the ith standard unit vector in C _1.) Thus, in gambler's ruin, we are 
dealing with P.A. (b, Sj), 1 <. j <. b - 1. 

If the initial values are all nonnegative integers, we could interpret the 
Pascal array as representing many gamblers with different amounts of initial cap-
ital gambling at the same time. The full generality of complex entries will be 
needed in the last section of this paper. 

LEMMA 1: If 2 > - l 
X 0 = 2-f ak ^k ' 

then 
b-i 

F(n, bs Z0, i) = ]T akF(n9 b, ek, i). 
fc = l 

PROOF: This is true for n = 0 since the Oth column of P.A. (2?, Z0) consists 
of the coordinates (a1, ..., a^_x) of ^0- T n e recursive definition (1) can then 
be used to establish the result for all n, U 

.2. GRAPH THEORY AND RECURRENCE RELATIONS 

To learn more about Pascal arrays, it is useful to consider the labeled graph 

G-~ (1) (2) (3) ... (b - 2) (b - 1) 

A gambler could keep track of his gains and losses by moving a marker in a "ran-
dom walk" along the vertices of this graph. (He would have to leave the graph 
when he achieved victory or ruin.) 

The associated adjacency matrix Ab is the (b - 1) X (b - 1) matrix with 

Ab(j, i) 

For example, 

1 if vertices (j) and (£) are connected by an edge, 

0 otherwise. 

0 
1 
0 
0 

1 
0 
1 
0 

0 
1 
0 
1 

0 
0 
1 
0 

LEMMA 2: [2, Lemma 2.5, p. 11] For n > 1, the (j, i)-entry of the matrix power 
Ab equals the number of paths of G of length n starting at vertex (j) and ending 
at vertex (i). D 

In Pascal array terminology., Ab(j, i) = F(n9 b, e- , i). 

The characteristic polynomial of Ab is 

Fh{\) - det(Ab - Mb)9 

where Ib is the (b - 1) X (b - 1) identity matrix. We have P2 = -X, P3 = X2 - 1, 
and, in general, we expand the determinant by its first row to obtain the impor-
tant recursive formula 

(2) pka) = - x p ^ a ) - pk.2{\). 
Note the similarity of this definition to that of the Fibonacci polynomials. Con-
sistent with (2), we define 

PiM = -P3M ~ AP2(A) = 1 and P0(A) = -P2(A) - \P1(X) = 0 . 
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In Diagram 2, we give a chart of the Pk(X) for 0 <. k <. 10. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Pk(X) 

0 
1 

-X 
X2 - 1 

-X3 + 2X 
Xh- 3X2 - 1 

-X5 + 4X3 - 3X 
X6- 5X4 + 6X2 - 1 

-X7 + 6X5 - 10X3 + 4X 
7Xb + 15XM 10XZ + 1 

-X9 + 8X7 - 21X5 + 20X3 - 5X 

Diagram 2 

LEMMA 3: Pk (X) = i1 kFk(-i\)9 where the Fk are the Fibonacci polynomials. 

PROOF: By induction. 

P0(X) = 0=i1F0(-iX) and P1(\) = 1 = i°F1(-i\). 

Pk (X) =-XP (X) - -Pfc_2(̂ ) (by inductive assumption) 

- (-X)i1-(k-1)F,„1(~iX) - i^-^-^Fk_2(-i\) 

For ^ > 2 , 

' [ ( - ^ ^ ( - i X ) - ^ ^ - ^ ) ] 

= i1-k[(-i\)Fk_1(-i\) + Fk_2(-i\)] 
= i ^ ^ C - i X ) . D 

LEMMA 4: Pk (X) is a polynomial with integer coefficients having degree k - 1 and 
leading coefficient (-1) . 

PROOF: These statements follow from Eq. (2) by induction. D 

The Cayley-Hamilton Theorem [4, Cor. 2, p. 244] states that Pb (Ab) equals the 
zero matrix. Then for any m _> 0, Am

h • Pb(Ah) equals the zero matrix. Let 

fe = 0 
Thus , . 

b - 1 
] P £>kAb

+k e q u a l s the zero m a t r i x for a l l m >_ 0 . 
k = o 

Looking at individual entries, 
b-l 

E M* 
m + & (j, i) = 0 for all to j> 0, 0 < i9 j < b. 

k = 0 
By Lemma 2, this is equivalent to 

b-l 
(3) ]T 6kF(/?? + k5 b9 ej9 i) = 0 for all m _> 0, 0 < i9 j < b. 

k = 0 
When a sequence satisfies a linear recurrence relation such as (3), we say that 

r„ W = t, M* = o 
is its auxiliary equation. 
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We have proved the following. 

THEOREM 5: Every row {F(n9 b9 3j9 i)}^=0 of the Pascal array P.A. (b9 §j) is a 
sequence which satisfies a linear recurrence relation with constant coefficients 
and auxiliary equation Pb (A) = 0, • 

COROLLARY 6: Every row of any Pascal array P.A. (b9 J0) satisfies the linear re-
currence relation with auxiliary equation P, (A) 0. 

PROOF: This follows from Theorem 5, from Lemma 1, and from the superposition 
principle for solutions to linear recurrence relations. D 

As a consequence of Corollary 6 and Lemma 4, if we know a row of a Pascal array 
P.A. (b9 j£Q) as far as the (b - 2)nd column, we can reconstruct the whole row 
uniquely. 

We have not yet derived a closed-form expression for Pk(\). Following [4, pp. 
267-70], we write 

pk+1a) = -APfc<x) - Pfc-i(x) 
Pk(X) = Pk(X) 

In matrix terms, 

Pfc + i W pka) 

A long calculation then produces the closed-form expression 

Thisparallels [1, Eq. (1.3), p. 409], And, as in [1, Sec. 3], the matrix 

[-A -i\ 
M -

L i oj 
can be made to yield a great number of identities based on the iterative property 

v pk+ia> -M*> 1 

Mk -
\Pk(X) -Pfc-i(X)_ 

Unlike the Fibonacci polynomials [5, Theorem 1], the P& (A) are reducible for k >_ 3. 
Their factors are interesting, and should be a subject of further study. 

3. DIVISIBILITY PROPERTIES 

In this section we will show how divisibility properties of {Pb(X)} similar 
to those of the Fibonacci polynomials [ls p. 415] follow from the consideration of 
Pascal arrays. Some of our theorems could also be derived using the above matrix 
M9 but we wish to give proofs in the spirit of the gambler's ruin problem. 

LEMMA 7: Let A0 be a root of Pb (A) = 0. Then the sequence {1, A0, AQ, ... sat-
isfies the linear recurrence relation with auxiliary equation Pb(X) - 0. 

PROOF: Let 

Then for any m >_ 09 
^w fe = 0 

.fc-i b - l 
^k + m , m JT*K Q , k 
A n ~ A 0 / rPfeA0 

k = 0 
DfcAg 0, since A0 is a root of Pb(X) = 0. O 
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LEMMA 8: There exists a vector Jx such that P. A. (b9 j?x) has bottom row {1, X0, 
X0, . ..}, where X0 is a root of Pb (X) 

PROOF: Suppose we are given 

F(0, b9 Xl9 1) = 1, F(l, b, Zls 1) A. , F{b 2, 2>, fl9 1) = Xb-2, 
and^we wish to determine X1. Using Eq. (1) (third clause), we can determine F(0, 
i, fi, 2) through F(i - 3, b9 Xl9 2). Then using Eq. (1) (second clause), we can 
determine F(0, b9 Xl9 3), . v , F(2> - 4, b9 Xl9J)9 . .., F(0, fc, Xl9 b - 2), F(l, 
b9 Xl9 b - 2), and F(09 b9 Xl9 b - 1). Thus, Jt1 is determined uniquely. Diagram 
3 illustrates this procedure in case b = 5. 

5 

4 

3 

2 

1 

X0 - 2AQ 

xl - i 

1 *! 

Diagram 3 

Now we can fill in all of P.A. (2?s Xi). By Corollary 6, its bottom row satisfies 
the linear recurrence relation with auxiliary equation Pb(X) = 0. By the remark 
following Corollary 6 and Lemma 7, that row must be {1, X0s XQ, XQ, ...}. Q 

Next we show that {1, X0s X§, . ..}9 and indeed all of P.A. (Xl9 b), can be em-
bedded in a Pascal array of height bo for any integer o > 0. It then follows 
easily that X0 is also a root of Pbo (X) = 0 . 

If 1 = otî ! + ••• + oikek9 then the palindrome Xp is defined to be 

a^x + ••• + a ^ . 

We construct an arbitrary array G(n9 i), n >;0 and 0 < i < 2?<2, as follows: 

F(n9 b, Xl9 i - 2db) if 2db < i < (2d + 1)2? and 0 < d <. \° ~ 1 j. 

(̂ (n, i) = \ 0 if i is a multiple of 2?, 

(2d - l)b) if (2d - l)b < i < 2db and 1 < d <. [|J. F[n9 b9 -~Xl9 ^ 

In Diagram 4, we illustrate this construction in the case b = 5, o = 2, A X = e3. 
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Diagram 4 
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LEMMA 9: G{n9 i) is a Pascal array of height be with initial vector 

X2 = (Xl9 0, -If, 0S . . . ) . 
PROOF; This follows by checking definition (1) in the five cases of an entry 

in an all-zero row, an entry next to an all-zero row, an entry in the interior of 
one of the copies of P.A. (il9 b) or P.A. (-if9 b) s and an entry in the top or bot-
tom row of the whole array. D 

THEOREM 10: Any root of Pb(X) = 0 is a root of Pbc(X) = 0. 

PROOF: We have just seen that if AQ is any root of Pb(X) = 0, then {l, A0, 
AQS ...} is the bottom row of a Pascal array of height be By Corollary 6, the 
sequence satisfies the linear recurrence relation with auxiliary equation Pba(X) = 
0. Applying this fact to the subsequence {1, A0, ..., A Q ^ " 1 } , we have that 

Pbo(X0) = 0, D 

THEOREM 11: Pb (X) divides Pba (A), with quotient a polynomial Q(X) with.integer 
coefficients and leading coefficient ±1. 

PROOF: By Theorem 10, Pb (X) divides Pba(X). Let the quotient be Q(X) . Define 
Z>-2 

Q(X) - £akXk , Pb(X) = E M " ± **"1. ^d Pba(X) = £ Y,A* ± Ab*"x. 

The form of these last two expressions is dictated by Lemma 4. By multiplication 
of leading coefficients, (±l)abo_b = ±1, which implies that a ^ _ & = ±1. Suppose 
we have proved that ®<bo_b9 a ^ ^ ^ , ...,

 abe-b-k a r e integers. Then by polynomial 
multiplication, 

Thus afco_t.(k+1) .ust also be an integer. This completes the proof by induction. 
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